福田の数学〜北里大学2021年医学部第3問〜関数の増減とはさみうちの原理による数列の極限 - 質問解決D.B.(データベース)

福田の数学〜北里大学2021年医学部第3問〜関数の増減とはさみうちの原理による数列の極限

問題文全文(内容文):
3 関数f(x)=x52x3+9xについて考える。実数tに対してy=f(x)上の点(t,f(t))における接線とx軸の交点のx座標をg(t)とおく。
また、正の実数tに対してh(t)=g(t)tとおく。次の問いに答えよ。
(1)g(t)を求めよ。
(2)h(t)=0を満たす正の実数tを求めよ。
(3)実数pは、すべての正の実数tに対して|h(t)|pを満たすとする。
このようなpの最小値を求めよ。
(4)aを定数とする。a1=a, an+1=g(an) (n=1,2,3...)で定められる数列
{an}に対して、limnan=0となることを示せ。

2021北里大学医学部過去問
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#数列の極限#微分法#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
3 関数f(x)=x52x3+9xについて考える。実数tに対してy=f(x)上の点(t,f(t))における接線とx軸の交点のx座標をg(t)とおく。
また、正の実数tに対してh(t)=g(t)tとおく。次の問いに答えよ。
(1)g(t)を求めよ。
(2)h(t)=0を満たす正の実数tを求めよ。
(3)実数pは、すべての正の実数tに対して|h(t)|pを満たすとする。
このようなpの最小値を求めよ。
(4)aを定数とする。a1=a, an+1=g(an) (n=1,2,3...)で定められる数列
{an}に対して、limnan=0となることを示せ。

2021北里大学医学部過去問
投稿日:2023.01.09

<関連動画>

福田の入試問題解説〜慶應義塾大学2022年理工学部第4問〜指数関数と直線の位置関係と極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#関数と極限#微分とその応用#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
曲線C:y=exを考える。
(1)a,bを実数とし、a0とする。曲線Cと直線y=ax+bが共有点をもつため
のaとbの条件を求めよ。
(2)正の実数tに対し、C上の点A(t,et)を中心とし、直線y=xに接する円Dを
考える。直線y=xと円Dの接点Bのx座標は    であり、
円Dの半径は    である。線分ABを3:2に内分する点をPとし、Pのx座標、y座標
をそれぞれX(t),Y(t)とする。このとき、等式
limtY(t)kX(t){X(t)}2+{Y(t)}2=0
が成り立つような実数kを定めるとk=    である。
ただし、limttet=0である。

2022慶應義塾大学理工学部過去問
この動画を見る 

東大 入試問題 天才ヨビノリのたくみさんが解説 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
東京大学1990
an=k=1n1k,bn=k=1n12k+1
とするとき、limnan,limnbnanを求めよ。
この動画を見る 

【等比数列の極限!】無限等比級数の基礎と求め方を解説!【数学III】

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 3rd School
問題文全文(内容文):
無限等比級数の基礎と求め方を解説します。
この動画を見る 

11奈良県教員採用試験(数学:高校3番 逆関数と積分)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#対数関数#関数と極限#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
3⃣高 f(x)=ex+ex2 (x0)の逆関数をg(x)
(1)g(x)を求めよ。
(2)y=g(x),x=2,x軸で囲まれた面積
この動画を見る 

約束記号 四天王寺

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: 数学を数楽に
問題文全文(内容文):
x=2x1とする
2x1=x2+10
x=?

四天王寺高等学校
この動画を見る 
PAGE TOP preload imagepreload image