大学入試問題#277 横浜国立大学後期(2012) #定積分 - 質問解決D.B.(データベース)

大学入試問題#277 横浜国立大学後期(2012) #定積分

問題文全文(内容文):
$\displaystyle \int_{-1}^{1}(1-x^2)e^{-2x}dx$を求めよ

出典:2010年横浜国立大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1}(1-x^2)e^{-2x}dx$を求めよ

出典:2010年横浜国立大学 入試問題
投稿日:2022.08.10

<関連動画>

大学入試問題#33 浜松医科大学(2020) 漸化式と級数

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
数列$\{a_n\}$を
$a_1=1,\ 3a_{n+1}=a_n+\displaystyle \frac{1}{2^{n+1}}$で定める。
(1)一般項$a_n$を求めよ。
(2)$\displaystyle \sum_{n=1}^\infty\ n\ a_n$の収束、発散を調べよ。
収束するときはその和を求めよ。

出典:2020年浜松医科大学 入試問題
この動画を見る 

福田の数学〜慶應義塾大学2023年薬学部第3問〜データの分析と相関係数

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ ある病院に入院中の患者20人について、ある検査値と、薬Xと薬Yの使用量との関係について調べた。その結果をまとめたものが以下の表であり、斜線は薬を使用していないことを示す。
(1)薬Xのみを使用している患者の検査値の平均値は$\boxed{\ \ ネ\ \ }$(mg/dL)、薬Yのみを使用している患者の検査値の平均値は$\boxed{\ \ ノ\ \ }$(mg/dL)である。
したがって、薬Xと薬Yのどちらも使用していない患者の検査値の平均と比べ、薬Xのみを使用している患者の検査値の平均値は$\boxed{\ \ ハ\ \ }$、薬Yのみを使用している患者の検査値の平均値は$\boxed{\ \ ヒ\ \ }$。
(2)薬Xと薬Yを併用している患者の検査値の第1四分位数は$\boxed{\ \ フ\ \ }$(mg/dL)、第3四分位数は$\boxed{\ \ ヘ\ \ }$(mg/dL)である。
(3)薬Xの使用量と検査値との相関係数は、薬Xのみを使用している場合は0.78であり、薬Xと薬Yを併用している場合は$\boxed{\ \ ホ\ \ }$である。
よって薬Xと薬Yを併用すると、薬Xの使用量と検査値の相関係数が$\boxed{\ \ マ\ \ }$と考えられる。
なお下線部の0.78は、小数第3位を四捨五入した値である。
ただし、$\sqrt 2$=1.41, $\sqrt 5$=2.23, $\sqrt{30}$=5.48, $\sqrt{101}$=10.05として計算しなさい。

2023慶應義塾大学薬学部過去問
この動画を見る 

大学入試問題#43 津田塾大学(2021) 複素数

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#津田塾大学
指導講師: ますただ
問題文全文(内容文):
$|z-5|=|z+5i|$
$|z-2i|=2$を満たす複素数$z$に対して$z^4$を求めよ。

出典:2021年津田塾大学 入試問題
この動画を見る 

【数学】東大理科2022大問6ガチ解説!考え方から正解まで、思考プロセスをお見せします!

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
東大理系数学2022大問6
Oを原点とする座標平面上で考える。0以上の整数kに対して、vec(v_k)を
$\vec{v_k}=\left(\cos \left(\dfrac{2k\pi}{3}\right),\sin\left(\dfrac{2k\pi}{3}\right)\right)$
と定める。投げたとき表と裏がどちらも1/2の確率で出るコインをN回投げて座標平面上に点$X_0,X_1,X_2,…,X_N$を以下の規則(i)(ii)に従って定める。
(i)X_0はOにある。
(ii)nを1以上N以下の整数とする。$X_{n_1}$が定まったとし、$X_n$を次のように定める。
・n回目のコイン投げで表が出た場合、
$\vec{OX_n}=\vec{OX_(n-1)}+\vec{v_k}$
により$X_n$を定める。ただし、kは1回目からn回目までのコイン投げで裏が出た回数とする。
・n回目のコイン投げで裏が出た場合、$X_n$を$X_{n-1}$と定める。
(1)$N=8$とする。$X_8$がOにある確率を求めよ。
(2)$N=200$とする。$X_{200}$がOにあり、かつ、合計200回のコイン投げで表がちょうどr回出る確率を$p_r$とおく。ただし$0\leqq r\leqq 200$とする。$p_r$を求めよ。また$p_r$が最大となるrの値を求めよ。
この動画を見る 

名古屋大 数列 不等式の証明

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{1}=0,a_{n+1}=\sqrt{ a_{n}^2+5 }-1$ ($n$自然数)

(1)
$0 \leqq a_{n} \lt 2$を示せ

(2)
$a_{n} \lt a_{n+1}$を示せ

出典:名古屋大学 過去問
この動画を見る 
PAGE TOP