大学入試問題#277 横浜国立大学後期(2012) #定積分 - 質問解決D.B.(データベース)

大学入試問題#277 横浜国立大学後期(2012) #定積分

問題文全文(内容文):
$\displaystyle \int_{-1}^{1}(1-x^2)e^{-2x}dx$を求めよ

出典:2010年横浜国立大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1}(1-x^2)e^{-2x}dx$を求めよ

出典:2010年横浜国立大学 入試問題
投稿日:2022.08.10

<関連動画>

福田の数学〜千葉大学2022年理系第6問〜独立に動く空間上の2点の距離の最小

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
座標空間において、原点Oと点A(1,0,-1)と点B(0,5,0)がある。
実数$t$を用いて$t\ \overrightarrow{ OA }+\overrightarrow{ OB }$と表される点全体をlとする。また、平面xy平面上
の$y=x^2$を満たす点全体からなる曲線をCとする。
(1)曲線$C$上の点$P(a,a^2,0)$を固定する。l上の点Qを、$\overrightarrow{ OA }$と$\overrightarrow{ PQ }$
が垂直であるようにとる。このとき、点Qの座標をaを用いて表せ。
(2)曲線C上の点Rとl上の点Sのうち、$|\overrightarrow{ RS }|$を最小にする点Rと点Sの
組み合わせを全て求めよ。また、そのときの$|\overrightarrow{ RS }|$の値を求めよ。

2022千葉大学理系過去問
この動画を見る 

大学入試問題#258 東京理科大学(2011) #定積分 #面積

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$y-\tan\ x(0 \leqq x \lt \displaystyle \frac{\pi}{2})$
$y-\cos\ x(0 \leqq x \leqq \displaystyle \frac{\pi}{2})$
$x$軸で囲まれた部分の面積を求めよ。

出典:2011年東京理科大学 入試問題
この動画を見る 

大学入試問題#284 同志社大学(2013) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#同志社大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{6}}\cos^4\theta\ d\theta$

出典:2013年同志社大学 入試問題
この動画を見る 

福田の数学〜京都大学2024年理系第6問〜桁数がn桁の数列の中に含まれる最高位1の項の割合

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ 自然数$k$に対して、$a_k$=$2^{\sqrt k}$とする。$n$を自然数とし、$a_k$の整数部分が$n$桁であるような$k$の個数を$N_n$とする。また、$a_k$の整数部分が$n$桁であり、その最高位の数字が1であるような$k$の個数を$L_n$とする。次を求めよ。
$\displaystyle\lim_{n \to \infty}\frac{L_n}{N_n}$
ただし、例えば実数2345.678 の整数部分2345は4桁で、最高位の数字は2である。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題033〜浜松医科大学2016年度理系第3問〜指数方程式の解の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#微分とその応用#微分法#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
以下の問いに答えよ。なお、必要があれば以下の極限値の公式を用いてもよい。
$\lim_{x \to \infty}\frac{x}{e^x}=0$
(1)方程式$2^x=x^2 (x \gt 0)$の実数解の個数を求めよ。
(2)aを正の実数とし、xについての方程式$a^x=x^a (x \gt 0)$を考える。
$(\textrm{a})$方程式$a^x=x^a (x \gt 0)$の実数解の個数を求めよ。
$(\textrm{b})$方程式$a^x=x^a (x \gt 0)$でa,xがともに正の整数となるa,xの組$(a,x)$
をすべて求めよ。ただし$a \ne x$とする。

2016浜松医科大学理系過去問
この動画を見る 
PAGE TOP