【数Ⅰ】2次関数:【難問】場合分け嫌いな人必見!絶対値付き2次関数:序章 - 質問解決D.B.(データベース)

【数Ⅰ】2次関数:【難問】場合分け嫌いな人必見!絶対値付き2次関数:序章

問題文全文(内容文):
aを定数とする。xについての方程式 $│(x-2)(x-4)│=ax-5a+\dfrac{1}{2}$ が相異なる4つの実数解を持つときのaの値の範囲を求めよ。

場合分けの必要なし!
aの値によらず必ず通る定点を考慮する必要もなし!
できるだけラクをして正解にたどり着きましょう。
チャプター:

0:00 導入
1:22 グラフを書いてみる
2:17 4つ交点を持つということ
4:10 逆転の発想
4:50 注意点
5:36 エンディング

単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを定数とする。xについての方程式 $│(x-2)(x-4)│=ax-5a+\dfrac{1}{2}$ が相異なる4つの実数解を持つときのaの値の範囲を求めよ。

場合分けの必要なし!
aの値によらず必ず通る定点を考慮する必要もなし!
できるだけラクをして正解にたどり着きましょう。
投稿日:2023.02.23

<関連動画>

図形と計量空間の基本1 【烈's study!がていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#図形と計量#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
右の図のような$AB=\sqrt6、AD=\sqrt3、AE=1$である直方体$ABCD-EFGH$がある。このとき、次のものを求めよ。
(1)$\angle ACF$の大きさ 
(2)$△ACF$の面積
この動画を見る 

【高校数学】2次関数~平行移動・対称移動の混合問題~ 2-3.5【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
放物線$y=ax^2+bx+c$を$x$軸方向に4、$y$軸方向に-2だけ平行移動した後
$x$軸に関して対称移動したものの方程式が$y=2x^2-6x-4$になった。
定数$a,b,c$を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2021年経済学部第1問〜2つの円に同時に外接する円の条件

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} 座標平面上の原点を中心とする半径2の円をC_1、中心の座標が(7,0)、半径3\\
の円をC_2とする。さらにrを正の実数とするとき、C_1とC_2に同時に外接する円で、\\
その中心の座標が(a,b)、半径がrであるものをC_3とする。ただし、2つの円が\\
外接するとは、それらが1点を共有し、中心が互いの外部にあるときをいう。\\
\\
(1)rの最小値は\boxed{\ \ ア\ \ }であり、aの最大値は\boxed{\ \ イ\ \ }となる。\\
\\
(2)aとbは関係式b^2=\boxed{\ \ ウエ\ \ }(a+\boxed{\ \ オカ\ \ })(a-4)を満たす。\\
\\
(3)C_3が直線x=-3に接するとき、a=\frac{\boxed{\ \ キク\ \ }}{\boxed{\ \ ケ\ \ }}, |b|=\frac{\sqrt{\boxed{\ \ コサシ\ \ }}}{\boxed{\ \ ス\ \ }}である。\\
\\
(4)点(a,b)と原点を通る直線と、点(a,b)と点(7,0)を通る直線が直交するとき、\\
|b|=\frac{\boxed{\ \ セソ\ \ }}{\boxed{\ \ タ\ \ }}となる。
\end{eqnarray}

2021慶應義塾大学経済学部過去問
この動画を見る 

円が通過した面積は?文星芸術大附属(栃木県)

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
半径1cmの円が滑らないように△ABCの周りを1周する
円が通過した部分の面積は?
*図は動画内参照
文星芸術大学附属高等学校(改)
この動画を見る 

【数学Ⅱ】半角の公式は覚えるな!

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
(1) $\cos \displaystyle \frac{\pi}{8}$

(2) $\sin \displaystyle \frac{\pi}{8}$

(3) $\cos \displaystyle \frac{\pi}{12}$
この動画を見る 
PAGE TOP