数学「大学入試良問集」【19−14 サイクロイドと接線・面積】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【19−14 サイクロイドと接線・面積】を宇宙一わかりやすく

問題文全文(内容文):
サイクロイド$x=\theta-\sin\theta,y=1-\cos\theta(0 \leqq \theta \leqq 2\pi)$
次の各問いに答えよ。

(1)$C$上の点$\lbrack \displaystyle \frac{\pi}{2}-1,1 \rbrack$における接線$l$の方程式を求めよ。
(2)接線$l$と$y$軸および$C$で囲まれた部分の面積を求めよ。
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#武蔵工業大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
サイクロイド$x=\theta-\sin\theta,y=1-\cos\theta(0 \leqq \theta \leqq 2\pi)$
次の各問いに答えよ。

(1)$C$上の点$\lbrack \displaystyle \frac{\pi}{2}-1,1 \rbrack$における接線$l$の方程式を求めよ。
(2)接線$l$と$y$軸および$C$で囲まれた部分の面積を求めよ。
投稿日:2021.09.14

<関連動画>

【数Ⅲ-140】部分積分②

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(部分積分➁)

Q次の不定積分を求めよ

①$\int \log xdx$

➁$\int \log (x+2)dx$

③$\int (\log x)^2dx$
この動画を見る 

大学入試問題#140 横浜市立大学医学部(2008) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#横浜市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-2}^{2}x^4\sqrt{ 4-x^2 }\ dx$を計算せよ。

出典:2008年横浜市立大学医学部 入試問題
この動画を見る 

大学入試問題#335 防衛医科大学(2010) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#防衛医科大学
指導講師: ますただ
問題文全文(内容文):
$0 \lt a \lt 1$
$\displaystyle \int_{a}^{1}x\sqrt{ 1-x }\ dx$

出典:2010年防衛医科大学 入試問題
この動画を見る 

福田の数学〜早稲田大学2024年理工学部第5問〜媒介変数表示のグラフと回転体の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#積分とその応用#微分法#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ $xy$平面上において、以下の媒介変数表示をもつ曲線を$C$とする。
$\left\{\begin{array}{1}
x=\sin t+\displaystyle\frac{1}{2}\sin 2t    \\
y=-\cos t-\displaystyle\frac{1}{2}\cos 2t-\frac{1}{2}\\
\end{array}\right.
$
ただし、0≦$t$≦$\pi$とする。
(1)$y$の最大値、最小値を求めよ。
(2)$\displaystyle\frac{dy}{dt}$<0 となる$t$の範囲を求め、$C$の概形を$xy$平面上に描け。
(3)$C$を$y$軸のまわりに1回転してできる立体の体積$V$を求めよ。
この動画を見る 

この積分は難問「もはや積分偏差値70over」 By 英語orドイツ語シはBかHか さん

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1} \displaystyle \frac{x|x|(2x^2+1)e^{2x^2}}{2x(xe^{x^2}-1)+e^{-x^2}} dx$
この動画を見る 
PAGE TOP