福田の数学〜筑波大学2022年理系第6問〜複素数平面上の点の軌跡と最小値 - 質問解決D.B.(データベース)

福田の数学〜筑波大学2022年理系第6問〜複素数平面上の点の軌跡と最小値

問題文全文(内容文):
$i$は虚数単位とする。次の条件$(\textrm{I}),(\textrm{II})$のどちらも満たす複素数z全体の集合を
Sとする。
$(\textrm{I})z$の虚部は正である。
$(\textrm{II})$複素数平面上の点$A(1),B(1-iz),C(z^2)$は一直線上にある。
このとき、以下の問いに答えよ。
(1)1でない複素数$\alpha$について、$\alpha$の虚部が正であることは、$\frac{1}{\alpha-1}$の虚部が
負であるための必要十分条件であることを示せ。
(2)集合Sを複素数平面上に図示せよ。
(3)$w=\frac{1}{z-1}$とする。zがSを動くとき、$|w+\frac{i}{\sqrt2}|$の最小値を求めよ。

2022筑波大学理系過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$i$は虚数単位とする。次の条件$(\textrm{I}),(\textrm{II})$のどちらも満たす複素数z全体の集合を
Sとする。
$(\textrm{I})z$の虚部は正である。
$(\textrm{II})$複素数平面上の点$A(1),B(1-iz),C(z^2)$は一直線上にある。
このとき、以下の問いに答えよ。
(1)1でない複素数$\alpha$について、$\alpha$の虚部が正であることは、$\frac{1}{\alpha-1}$の虚部が
負であるための必要十分条件であることを示せ。
(2)集合Sを複素数平面上に図示せよ。
(3)$w=\frac{1}{z-1}$とする。zがSを動くとき、$|w+\frac{i}{\sqrt2}|$の最小値を求めよ。

2022筑波大学理系過去問
投稿日:2022.05.30

<関連動画>

山梨大 2次方程式と複素数平面

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#複素数平面#2次方程式と2次不等式#複素数平面#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-2kx+k=0$は実数解なし
2つの解$\alpha,\beta$と1を複素中面で結ぶと正三角形となる。
$k$の値を求めよ

出典:2000年山梨大学 過去問
この動画を見る 

横浜市大 複素数 cos36°,cos108° 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C#横浜市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
横浜市立大学過去問題
(1)$x^2-x-1=0$解け
(2)複素数Z$(\neq 0)$,$\quad x=Z+\frac{1}{Z}$として、このxを(1)の方程式に代入して、すべての解を求めよ。
(3)$cos\frac{\pi}{5}$と$cos\frac{3\pi}{5}$の値
この動画を見る 

福田の一夜漬け数学〜数学III 複素数平面〜ド・モアブルの定理(4)早稲田大学の問題に挑戦

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#数列#漸化式#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数$z_n (n=1,2,3\cdots)$が次の式を満たしている。
$z_1=1,\ z_2=\displaystyle \frac{1}{2},$ 複素数の積$z_nz_{n+1}=\displaystyle \frac{1}{2}\left(\displaystyle \frac{1+\sqrt3i}{2}\right)^{n-1}$
このとき、$S=z_1+z_2+z_3+\cdots\cdots+z_{2002}$を求めよ。

早稲田大学過去問
この動画を見る 

札幌医科大 2024 複素数の方程式

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
x>0,y≠0
z=x+yi
$z^3=\overline{z}^2$のときxを求めよ

2024札幌医科大過去問
この動画を見る 

山形大 ナイスな問題

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \alpha=\cos36°+i\sin36°$とする.

(1)$(x-1)(x-\alpha)(x-\alpha^2)・・・・・・(x-\alpha^9)$を計算せよ.
(2)$(x-1)(x-\alpha^2)(x-\alpha^4)(x-\alpha^6)(x-\alpha^8)$を計算せよ.
(3)$(x-\alpha)(x-\alpha^3)(x-\alpha^7)(x-\alpha^9)$を計算せよ.
(4)(3)を用いて\alpha+\dfrac{1}{\alpha}を計算せよ.

山形大過去問
この動画を見る 
PAGE TOP