福田の数学〜明治大学2022年理工学部第1問(3)〜接線の本数と接点の個数 - 質問解決D.B.(データベース)

福田の数学〜明治大学2022年理工学部第1問(3)〜接線の本数と接点の個数

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}} \ (3)f(x)=(\log x)^2+2\log x+3として、座標平面上の曲線y=f(x)をCとする。\\
ただし、\log xはxの自然対数を表し、eを自然対数の底とする。\\
(\textrm{a})関数f(x)はx=\frac{\boxed{\ \ ソ\ \ }}{e}のとき最小値\boxed{\ \ タ\ \ }をとる。\\
(\textrm{b})曲線Cの変曲点の座標は(\boxed{\ \ チ\ \ },\ \boxed{\ \ ツ\ \ })である。\\
(\textrm{c})直線y=\boxed{\ \ ツ\ \ }と曲線Cで囲まれた図形の面積は\frac{\boxed{\ \ テ\ \ }}{e^2}である。\\
(\textrm{d})aを実数とする。曲線Cの接線で、点(0,\ a)を通るものがちょうど1本あるとき、\\
aの値は\boxed{\ \ ト\ \ }である。\\
(\textrm{e})bを実数とする。曲線Cの2本の接線が点(0,\ b)で垂直に交わるとき、\\
bの値は\frac{\boxed{\ \ ナ\ \ }}{\boxed{\ \ ニ\ \ }}である。
\end{eqnarray}

2022明治大学理工学部過去問
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#接線と法線・平均値の定理#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}} \ (3)f(x)=(\log x)^2+2\log x+3として、座標平面上の曲線y=f(x)をCとする。\\
ただし、\log xはxの自然対数を表し、eを自然対数の底とする。\\
(\textrm{a})関数f(x)はx=\frac{\boxed{\ \ ソ\ \ }}{e}のとき最小値\boxed{\ \ タ\ \ }をとる。\\
(\textrm{b})曲線Cの変曲点の座標は(\boxed{\ \ チ\ \ },\ \boxed{\ \ ツ\ \ })である。\\
(\textrm{c})直線y=\boxed{\ \ ツ\ \ }と曲線Cで囲まれた図形の面積は\frac{\boxed{\ \ テ\ \ }}{e^2}である。\\
(\textrm{d})aを実数とする。曲線Cの接線で、点(0,\ a)を通るものがちょうど1本あるとき、\\
aの値は\boxed{\ \ ト\ \ }である。\\
(\textrm{e})bを実数とする。曲線Cの2本の接線が点(0,\ b)で垂直に交わるとき、\\
bの値は\frac{\boxed{\ \ ナ\ \ }}{\boxed{\ \ ニ\ \ }}である。
\end{eqnarray}

2022明治大学理工学部過去問
投稿日:2022.09.07

<関連動画>

【数Ⅲ】微分の応用:漸近線があるグラフの概形part2

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$f(x)=\dfrac{x^3}{x^2-4}$ の漸近線を求めよ
この動画を見る 

福田の数学〜大阪大学2023年理系第3問〜三角方程式の解の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ Pを座標平面上の点とし、点Pの座標を(a,b)とする。-π≦t≦πの範囲にある実数tのうち、曲線y=$\cos x$上の点(t, $\cos t$)における接線が点Pを通るという条件をみたすものの個数をN(P)とする。N(P)=4かつ0<a<πをみたすような点Pの存在範囲を座標平面上に図示せよ。

2023大阪大学理系過去問
この動画を見る 

福田の数学〜早稲田大学2023年理工学部第3問〜逆関数とで囲まれる面積

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 実数xに対して関数f(x)をf(x)=$e^{x-2}$で定め、正の実数xに対して関数g(x)をg(x)=$\log x$+2で定める。またy=f(x), y=g(x)のグラフをそれぞれ$C_1$,$C_2$とする。以下の問いに答えよ。
(1)f(x)とg(x)がそれぞれ互いの逆関数であることを示せ。
(2)直線y=xと$C_1$が2点で交わることを示せ。ただし、必要なら2<e<3を証明しないで用いてよい。
(3)直線y=xと$C_1$との2つの交点のx座標を$\alpha$, $\beta$とする。ただし$\alpha$<$\beta$とする。
直線y=xと$C_1$,$C_2$をすべて同じxy平面上に図示せよ。
(4)$C_1$と$C_2$で囲まれる図形の面積を(3)の$\alpha$と$\beta$の多項式で表せ。

2023早稲田大学理工学部過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題052〜東京慈恵会医科大学2019年度医学部第2問〜2曲線の相接と囲まれた部分の面積とその極限

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京慈恵会医科大学#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ $a,b$は定数で$a \gt 1$とする。2つの曲線$C_1:y=\displaystyle\frac{3e^x-1}{e^x+1}$,$C_2:y=\displaystyle\frac{e^x}{a^2}+b$が共有点Pをもち、点Pにおいて共通の接線をもつとする。このとき、次の問いに答えよ。
(1)$C_1$の凹凸および変曲点を調べ、$C_1$の概形を描け。
(2)点Pの座標と$b$を$a$で表せ。
(3)$C_1$,$C_2$と$y$軸で囲まれた部分の面積$S(a)$を$a$で表せ。また、極限値$\displaystyle\lim_{a \to \infty}S(a)$を求めよ。
ただし、必要ならば$\displaystyle\lim_{x \to \infty}\frac{\log x}{x}= 0$であることを用いてよい。

2019東京慈恵会医科大学医学部過去問
この動画を見る 

福田の数学〜上智大学2021年理工学部第2問(1)〜条件を満たす関数と命題の否定

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (1)実数全体で定義され、実数の値をとる関数f(x)に対する次の条件\ p\ を考える。\\
p:「K以上の全ての実数xに対してf(x) \geqq 1」が成り立つような実数Kが存在する。\\
(\textrm{i})\ 次に挙げた関数(\textrm{a})~(\textrm{d})のそれぞれについて、pを満たすならばo、pを\\
満たさないならばxをマークせよ。\\
(\textrm{a})f(x)=xe^{-x}  (\textrm{b})f(x)=\frac{2x^2+1}{x^2+1} (\textrm{c})f(x)=x+\sin x (\textrm{d})f(x)=x\sin x\\
(\textrm{ii})次の条件がpの否定になるように、\boxed{\ \ あ\ \ }~\boxed{\ \ え\ \ }のそれぞれの選択肢から、\\
あてはまるものを選べ。\\
・「\boxed{\ \ あ\ \ }\ \boxed{\ \ い\ \ }実数に対して\boxed{\ \ う\ \ }」が\boxed{\ \ え\ \ }\\
\\
\boxed{\ \ あ\ \ }の選択肢:(\textrm{a})K以上の  (\textrm{b})K未満の  \\
\boxed{\ \ い\ \ }の選択肢:(\textrm{a})すべての  (\textrm{b})ある  \\
\boxed{\ \ う\ \ }の選択肢:(\textrm{a})f(x) \geqq 1  (\textrm{b})f(x) \lt 1  \\
\boxed{\ \ え\ \ }の選択肢:(\textrm{a})どんな実数Kについても成り立つ  \\(\textrm{b})成り立つような実数Kが存在する  \\
(\textrm{iii})関数f(x)に対して、g(x)=2f(x)で関数g(x)を定める。次に挙げた命題(\textrm{A})~(\textrm{D})\\
のそれぞれについて、正しければoを、正しくなければxを、マークせよ。\\
(\textrm{A})f(x)がpを満たすならば、g(x)もpを満たす。\\
(\textrm{B})g(x)がpを満たすならば、f(x)もpを満たす。\\
(\textrm{C})f(x)がpを満たさないならば、g(x)もpを満たさない。\\
(\textrm{D})f(x)がpを満たさないならば、g(x)もpを満たす。\\
\end{eqnarray}

2021上智大学理工学部過去問
この動画を見る 
PAGE TOP