横浜市立(医)漸化式 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

横浜市立(医)漸化式 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
2016横浜市立大学過去問題
$a_1=1 , a_2 = 1$
$a_{n+2}-5a_{n+1}+6a_n-6n = 0$
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#横浜市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2016横浜市立大学過去問題
$a_1=1 , a_2 = 1$
$a_{n+2}-5a_{n+1}+6a_n-6n = 0$
投稿日:2018.04.24

<関連動画>

福田の数学〜筑波大学2022年理系第2問〜確率漸化式と常用対数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 整数\ a_1,\ a_2,\ a_3,\ \ldotsを、さいころをくり返し投げることにより、以下のように\\
定めていく。まずa_1=1とする。そして、正の整数nに対し、a_{n+1}の値を、n回目に\\
出たさいころの目に応じて、次の規則で定める。\\
(\ 規則\ ) n回目に出た目が1,2,3,4ならa_{n+1}=a_n、5,6ならa_{n+1}=-a_n\\
例えば、さいころを3回投げ、その出た目が順に5,3,6であったとすると、\\
a_1=1,a_2=-1,a_3=-1,a_4=1となる。\\
a_n=1となる確率をp_nとする。ただし、p_1=1とし、さいころのどの目も、\\
出る確率は\frac{1}{6}であるとする。\\
(1)p_2,p_3を求めよ。\\
(2)p_{n+1}をp_nを用いて表せ。\\
(3)p_n \leqq 0.5000005を満たす最小の正の整数nを求めよ。\\
ただし、0.47 \lt \log_{10}3 \lt 0.48であることを用いてよい。\\
\end{eqnarray}

2022筑波大学理系過去問
この動画を見る 

Σ

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
$\displaystyle \sum_{k=1}^n k^2 = \frac{1}{6}n(n+1)(2n+1)$
この動画を見る 

関西学院大 漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#関西学院大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$P$自然数、$a_1=2-\displaystyle \frac{1}{2^p}$
$a_{n+1}=2a_n-n$

一般項を求めよ

{$a_n$}の最大値とそれを与える$n$を求めよ

出典:2005年関西学院大学 過去問
この動画を見る 

福田の数学〜京都大学2022年理系第6問〜漸化式の解法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{6}}\ 数列\left\{x_n\right\}, \left\{y_n\right\}を次の式\\
x_1=0, x_{n+1}=x_n+n+2\cos\frac{2\pi x_n}{3}  (n=1,2,3,\ldots)\\
y_{3m+1}=3m, y_{3m+2}=3m+2, y_{3m+3}=3m+4  (m=0,1,2,3,\ldots)\\
により定める。このとき、数列\left\{x_n-y_n\right\}の一般項を求めよ。
\end{eqnarray}

2022京都大学理系過去問
この動画を見る 

これの説明できますか?

アイキャッチ画像
単元: #数列#漸化式#数列の極限#数学(高校生)#数B#数Ⅲ
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1-1-+1-1-+1-1...
解説動画です
この動画を見る 
PAGE TOP