福田の数学〜慶應義塾大学薬学部2025第1問(1)〜絶対不等式と2次関数の最大最小 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学薬学部2025第1問(1)〜絶対不等式と2次関数の最大最小

問題文全文(内容文):

$\boxed{1}$

(1)$a$を実数とする。

$x$の$2$次関数$f(x)=x^2-ax+a+2$は、

すべての実数$x$に対して$f(x)\geqq 0$を満たす。

(i)$a$の値の範囲は$\boxed{ア}$である。

(ii)$-2\leqq x\leqq 3$において、$f(x)$の最大値を$m$,

最大値を$M$とおく。

$m$が最大となるのは$a=\boxed{イ}$のときであり、

このとき$m=\boxed{ウ},M=\boxed{エ}$である。

$2025$年慶應義塾大学薬学部過去問題
単元: #大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(1)$a$を実数とする。

$x$の$2$次関数$f(x)=x^2-ax+a+2$は、

すべての実数$x$に対して$f(x)\geqq 0$を満たす。

(i)$a$の値の範囲は$\boxed{ア}$である。

(ii)$-2\leqq x\leqq 3$において、$f(x)$の最大値を$m$,

最大値を$M$とおく。

$m$が最大となるのは$a=\boxed{イ}$のときであり、

このとき$m=\boxed{ウ},M=\boxed{エ}$である。

$2025$年慶應義塾大学薬学部過去問題
投稿日:2025.04.07

<関連動画>

【高校数学】  数Ⅰ-67  2次不等式⑥

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$0 \leqq x \leqq2$の範囲において、常に$x^2-2ax+3a \gt 0$
が成り立つように、定数aの値の範囲を求めよう。
この動画を見る 

2次方程式の応用 (高校数学)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
2次方程式$(x-1)(x-2)-(x-k)=0の解を\mathit{α ,β}(\mathit{α}<\mathit{β})とするとき
\mathit{α,β},1,2,kを小さい順に並べよ。(ただし、1<\mathit{k}<2$)
この動画を見る 

【実はカンタン!】見慣れない2次関数の応用問題を2分で解説!〔数学、高校数学〕

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$x,y$は実数とする。$x+y=4$のとき、$xy$の最大値を求めよ。
この動画を見る 

福田のわかった数学〜高校1年生022〜2次方程式の解の分離

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 2次方程式の解の分離
$a \geqq 0$のとき、
$x^2-(a+1)x-a=0$
の実数解の取り得る値の範囲を求めよ。
この動画を見る 

#北海道大学1957#方程式_65

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#一次不等式(不等式・絶対値のある方程式・不等式)#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: ますただ
問題文全文(内容文):
$\dfrac{10x-10^{-x}}{10x+10^{-x}}=a \ (\vert a \vert \gt 1)$
$x$について解け.

1957北海道大学過去問題
この動画を見る 
PAGE TOP