福田の数学〜慶應義塾大学薬学部2025第1問(1)〜絶対不等式と2次関数の最大最小 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学薬学部2025第1問(1)〜絶対不等式と2次関数の最大最小

問題文全文(内容文):

$\boxed{1}$

(1)$a$を実数とする。

$x$の$2$次関数$f(x)=x^2-ax+a+2$は、

すべての実数$x$に対して$f(x)\geqq 0$を満たす。

(i)$a$の値の範囲は$\boxed{ア}$である。

(ii)$-2\leqq x\leqq 3$において、$f(x)$の最大値を$m$,

最大値を$M$とおく。

$m$が最大となるのは$a=\boxed{イ}$のときであり、

このとき$m=\boxed{ウ},M=\boxed{エ}$である。

$2025$年慶應義塾大学薬学部過去問題
単元: #大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(1)$a$を実数とする。

$x$の$2$次関数$f(x)=x^2-ax+a+2$は、

すべての実数$x$に対して$f(x)\geqq 0$を満たす。

(i)$a$の値の範囲は$\boxed{ア}$である。

(ii)$-2\leqq x\leqq 3$において、$f(x)$の最大値を$m$,

最大値を$M$とおく。

$m$が最大となるのは$a=\boxed{イ}$のときであり、

このとき$m=\boxed{ウ},M=\boxed{エ}$である。

$2025$年慶應義塾大学薬学部過去問題
投稿日:2025.04.07

<関連動画>

【数Ⅰ】【2次関数】2次関数の解の範囲 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の2次方程式が実数解をもつように、実数mの値の範囲を定めよ。
  (1)  x²+2mx+3=0       (2) x²+mx+m=0
2次方程式 x²-2mx-4m=0 が次の条件を満たすように、定数mの値の範囲を定めよ。
  (1) 異なる2つの実数解をもつ (2) 実数解をもたない
次の条件を満たすように、実数mの値の範囲を定めよ。
  (1) 2次関数 y=x²-2mx+2m+3 のグラフがx軸と共有点をもつ。
  (2) 2次関数 y=x²+2mx-m+2 のグラフがx軸と共有点をもたない。
この動画を見る 

意外と間違える!?二次方程式 2024京都府

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
方程式を解け
$8x^2=22x$

2024京都府
この動画を見る 

【数Ⅰ】【2次関数】2次関数の決定 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件を満たすような放物線の方程式を求めよ。
 (1) 放物線 y=-3x²+x-1を平行移動した曲線で,頂点が点(-2,3)である。
 (2) 放物線 y=x²-3xを平行移動した曲線で,2点 (2,1),(4,5)を通る。

2つの放物線y=x²-3x, y=1/2x²+ax+bの頂点が一致するように,定数a,bの値を定めよ。

(1) 放物線y=x²-3x十4を平行移動した曲線で,点(2, 4)を通り,頂点が直線y=2x+1上にある放物線の方程式を求めよ。
(2) 放物線y=-2x²+5xを平行移動した曲線で,点(1, -3)を通り,頂点が放物線y=x²十4上にある放物線の方程式を求めよ。
この動画を見る 

君はどうやって解く? 3通りで解説 二次方程式の計算 八王子東

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
方程式を解け
$(2x+5)^2=(x+1)^2$

八王子東高等学校
この動画を見る 

北海道大 二次方程式解と係数 整数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#2次方程式と2次不等式#数学(高校生)#北海道大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
96年 北海道大学過去問
$x^2-2px+p^2-2p-1=0$の2解を$α、β$とする。
$\displaystyle \frac{1}{2}$・$\displaystyle \frac{(α-β)^2-2}{(α+β)^2+2}$が整数となる実数$P$を全て求めよ
この動画を見る 
PAGE TOP