一瞬で2点を通る直線を求める流れが分かる動画~全国入試問題解法 #数学 #高校受験 #shorts - 質問解決D.B.(データベース)

一瞬で2点を通る直線を求める流れが分かる動画~全国入試問題解法 #数学 #高校受験 #shorts

問題文全文(内容文):
2点A,Cを通る直線の式を求めなさい.

宮城県高校過去問
単元: #数学(中学生)#平面上の曲線#高校入試過去問(数学)#数C
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
2点A,Cを通る直線の式を求めなさい.

宮城県高校過去問
投稿日:2023.03.23

<関連動画>

福田の数学〜慶應義塾大学2021年医学部第3問〜見上げる角が等しい点の軌跡と2次曲線

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#軌跡と領域#2次曲線#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 水平な平面上の異なる2点A(0,1),Q(x,y)にそれぞれ高さh \gt 0,g \gt 0の塔が\\
平面に垂直に立っている。この平面上にあってA,Qとは異なる点Pから2つの\\
塔の先端を見上げる角度が等しくなる状況を考える。ただし、h ≠ gとする。\\
\\
(1)点Qの座標が(T,1) (ただしT \gt 0)のとき、2つの塔を見上げる角度が等しく\\
なるような点Pは、中心の座標が(\boxed{\ \ (あ)\ \ },\boxed{\ \ (い)\ \ })、半径が\boxed{\ \ (う)\ \ }の円周上にある。\\
\\
(2)2つの塔を見上げる角度が等しくなるような点Pのうち、y軸上にあるものが\\
ただ1つあるとする。このときhとgの間には不等式\boxed{\ \ (え)\ \ }が成り立ち、\\
点Q(x,y)は2直線y=\boxed{\ \ (お)\ \ }, y=\boxed{\ \ (か)\ \ }のいずれかの上にある。\\
\\
(3)2つの塔を見上げる角度が等しくなるような点Pのうち、x軸上にあるものが\\
ただ1つであるとする。このとき点Q(x,y)は方程式\\
\boxed{\ \ (き)\ \ }x^2+\boxed{\ \ (く)\ \ }x+\boxed{\ \ (け)\ \ }y^2+\boxed{\ \ (こ)\ \ }y=1\\
で表される2次曲線上Cの上にある。Cが楕円であるのはhとgの間に不等式\boxed{\ \ (さ)\ \ }\\
が成り立つときであり、そのときCの2つの焦点の座標は(\boxed{\ \ (し)\ \ },\boxed{\ \ (す)\ \ }),\\
(\boxed{\ \ (せ)\ \ },\boxed{\ \ (そ)\ \ })である。\boxed{\ \ (さ)\ \ }が成り立たないときCは双曲線となり、\\
その2つの焦点の座標は(\boxed{\ \ (た)\ \ },\boxed{\ \ (ち)\ \ }),(\boxed{\ \ (つ)\ \ },\boxed{\ \ (て)\ \ })である。\\
さらに\frac{h}{g}=\boxed{\ \ (と)\ \ }のときCは直角双曲線となる。
\end{eqnarray}

2021慶應義塾大学医学部過去問
この動画を見る 

2023高校入試数学解説54問目 グラフ 明治学院

アイキャッチ画像
単元: #数学(中学生)#平面上の曲線#2次曲線#高校入試過去問(数学)#数C
指導講師: 数学を数楽に
問題文全文(内容文):
$y=\frac{a}{x}$のグラフと点P(2,1)を表した図
a>2となるグラフはどれ?
*図は動画内参照

2023明治学院高等学校
この動画を見る 

福田の数学〜神戸大学2022年理系第4問〜双曲線が直線から切り取る弦の中点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#点と直線#軌跡と領域#2次曲線#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ aを正の実数とし、双曲線\frac{x^2}{4}-\frac{y^2}{4}=1と直線y=\sqrt ax+\sqrt aが異なる2点P,Q\\
で交わっているとする。線分PQの中点をR(s,t)とする。以下の問いに答えよ。\\
(1)aの取りうる値の範囲を求めよ。\\
(2)s,tの値をaを用いて表せ。\\
(3)aが(1)で求めた範囲を動くときにsのとりうる値の範囲を求めよ。\\
(4)tの値をsを用いて表せ。
\end{eqnarray}

2022神戸大学理系過去問
この動画を見る 

福田の一夜漬け数学〜積分・面積と体積、媒介変数表示(1)〜受験編

アイキャッチ画像
単元: #平面上の曲線#積分とその応用#定積分#面積・体積・長さ・速度#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\theta-\sin\theta \\
y=1-\cos\theta
\end{array}
\right.
\end{eqnarray}(0 \leqq \theta \leqq 2\pi)$で表される曲線をCとする。

(1)Cとx軸で囲まれる部分の領域をDとする。Dの面積Sを求めよ。
(2)Dをx軸の周りに1回転してできる立体の体積Vを求めよ。

$\begin{eqnarray}
\left\{
\begin{array}{l}
x=t^2+1 \\
y=2-t-t^2
\end{array}
\right.
\end{eqnarray}(-2 \leqq t \leqq 1)$で表される曲線とx軸で囲まれた面積を求めよ。
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試Ⅲ第4問〜極方程式と曲線で囲まれた面積

アイキャッチ画像
単元: #平面上の曲線#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#媒介変数表示と極座標#数学(高校生)#大学入試解答速報#数学#明治大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} 座標平面の原点Oを極、x軸の正の部分を始線とする極座標(r,\ \theta)を考える。\\
k \gt 0として、極方程式\\
r(\sqrt{\cos\theta}+\sqrt{\sin\theta})^2=k  (0 \leqq \theta \leqq \frac{\pi}{2})\\
で表される曲線をC(k)とする。曲線C(k)上の点を直交座標(x,\ y)で表せばxの\\
とりうる値の範囲は、\boxed{\ \ ア\ \ } \leqq x \leqq \boxed{\ \ イ\ \ }\ である。\\
曲線C(k)とx軸、y軸で囲まれた図形の面積をS(k)とおけば、S(k)=\boxed{\ \ ウ\ \ }\ \\
でなる。直交座標が(\frac{k}{4},\ \frac{k}{4})である曲線\ C(k)上の点Aにおける曲線C(k)の接線l\\
の方程式は、y=\boxed{\ \ エ\ \ }となる。曲線\ C(k)と直線l、およびx軸で囲まれた\\
図形の面積をT(k)とおけば、S(k)=\boxed{\ \ オ\ \ }\ T(k)が成り立つ。0 \lt m \lt nを\\
満たす実数m,nに対して、S(n)-S(m)がT(n)と等しくなるのは、\\
\\
\frac{m^2}{n^2}=\frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ \ \ }}\ のときである。\\
\\
\boxed{\ \ イ\ \ }\ 、\boxed{\ \ ウ\ \ }の解答群\\
⓪\sqrt k  ①k  ②k^2  ③\frac{\sqrt 2}{2}  ④\frac{\sqrt 2}{3}  \\
⑤\frac{k}{2}  ⑥\frac{k}{3}  ⑦\frac{k^2}{4}  ⑧\frac{k^2}{5}  ⑨\frac{k^2}{6}  \\
\\
\boxed{\ \ エ\ \ }\ の解答群\\
⓪x+\frac{k}{2}  ①x+\frac{k}{4}  ②-x+\frac{k}{2}  ③-x+\frac{k}{4}  ④2x-\frac{k}{2}  \\
⑤2x-\frac{k}{4}  ⑥2x-\frac{3k}{4}  ⑦-2x+\frac{k}{2}  ⑧-2x+\frac{k}{4}  ⑨-2x+\frac{3k}{4}  
\end{eqnarray}

2021明治大学全統過去問
この動画を見る 
PAGE TOP