福田の数学〜明治大学2021年理工学部第1問(2)〜三角関数の最大最小 - 質問解決D.B.(データベース)

福田の数学〜明治大学2021年理工学部第1問(2)〜三角関数の最大最小

問題文全文(内容文):
1(2)座標平面上に2点A(58,0), B(0,32)をとる。Lは原点を通る直線で、Lが
x軸の正の方向となす角θ0θπ2の範囲にあるとする。ただし、角θ
符号は時計の針の回転と逆の向きを正の方向とする。点Aと直線Lとの距離を
dA、点Bと直線Lの距離をdBとおく。このとき、

dA+dB=        sinθ+        cosθ
である。θ0θπ2の範囲を動くとき、
dA+dBの最大値は        であり、
最小値は        である。

2021明治大学理工学部過去問
単元: #数Ⅱ#三角関数#三角関数とグラフ#加法定理とその応用#数学(高校生)#大学入試解答速報#数学#明治大学
指導講師: 福田次郎
問題文全文(内容文):
1(2)座標平面上に2点A(58,0), B(0,32)をとる。Lは原点を通る直線で、Lが
x軸の正の方向となす角θ0θπ2の範囲にあるとする。ただし、角θ
符号は時計の針の回転と逆の向きを正の方向とする。点Aと直線Lとの距離を
dA、点Bと直線Lの距離をdBとおく。このとき、

dA+dB=        sinθ+        cosθ
である。θ0θπ2の範囲を動くとき、
dA+dBの最大値は        であり、
最小値は        である。

2021明治大学理工学部過去問
投稿日:2021.09.27

<関連動画>

14京都府教員採用試験(数学:5番 三角関数)

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
5⃣y=a(1+sinx)cosx(0x2π)
の最大値が18のときaの値を求めよ。(a>0)
この動画を見る 

共通テスト第2日程2021年数学詳しい解説〜共通テスト第2日程2021年2B第1問〜対数関数と三角関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#指数関数と対数関数#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1
[1] (1)log1010=    である。また、log105,log1015をそれぞれ
log102log103を用いて表すと
log105=    log102+    
log1015=    log102+log103+    
(2)太郎さんと花子さんは、1520について話している。
以下では、log102=0.3010log103=0.4771とする。

太郎:1520は何桁の数だろう。
花子:15の20乗を求めるのは大変だね。log101520の整数部分に
着目してみようよ。

log101520
    <log101520<    +1
を満たす。よって、1520    桁の数である。

太郎:1520の最高位の数字も知りたいね。だけど、log101520
整数部分にだけ着目してもわからないな。
花子:N10<1520<(N+1)10を満たすような
正の整数Nに着目してみたらどうかな。

log101520の小数部分はlog101520    であり
log10    <log101520    <log10(    +1)
が成り立つので、1520の最高位の数字は    である。


[2]座標平面上の原点を中心とする半径1の円周上に3点P(cosθ,sinθ),
Q(cosα,sinα),R(cosβ,sinβ)がある。ただし、0θ<α<β<2π
とする。このとき、stを次のように定める。
s=cosθ+cosα+cosβ, t=sinθ+sinα+sinβ

(1)PQRが正三角形や二等辺三角形のときのstの値について考察しよう。
考察1:PQRが正三角形である場合を考える。
この場合、α,βθで表すと
α=θ+    3π, β=θ+    3π
であり、加法定理により
cosα=    , sinα=    
である。同様に、cosβおよびsinβを、sinθcosθを用いて表すことができる。
これらのことから、s=t=    である。

    ,    の解答群(同じものを繰り返し選んでもよい。)
12sinθ+32cosθ
32sinθ+12cosθ
12sinθ32cosθ
32sinθ12cosθ
12sinθ+32cosθ
32sinθ+12cosθ
12sinθ32cosθ
32sinθ12cosθ

考察2:PQRPQ=PRとなる二等辺三角形である場合を考える。

例えば、点Pが直線y=x上にあり、点Q,Rが直線y=xに関して対称
であるときを考える。このとき、θ=π4である。また、α
α<54π, β54π<βを満たし、点Q,Rの座標について、
sinβ=cosα, cosβ=sinαが成り立つ。よって
s=t=        +sinα+cosα
である。
ここで、三角関数の合成により
sinα+cosα=    sin(α+π    )
である。したがって

α=    12π, β=    12π

のとき、s=t=0である。

(2)次に、stの値を定めるときのθ,α,βの関係について考察しよう。
考察3:s=t=0の場合を考える。

この場合、sin2θ+cos2θ=1により、αβについて考えると
cosαcosβ+sinαsinβ=        
である。
同様に、θαについて考えると
cosθcosα+sinθsinα=        
であるから、θ,α,βの範囲に注意すると
βα=αθ=        π
という関係が得られる。

(3)これまでの考察を振り返ると、次の⓪~③のうち、
正しいものは    であることが分かる。
    の解答群
PQRが正三角形ならばs=t=0であり、s=t=0ならば
PQRは正三角形である。
PQRが正三角形ならばs=t=0であり、s=t=0
あってもPQRは正三角形でない場合がある。
PQRが正三角形であってもs=t=0でない場合があるが
s=t=0ならばPQRは正三角形である。
PQRが正三角形であってもs=t=0でない場合があり、
s=t=0であってもPQRが正三角形でない場合がある。
この動画を見る 

福田の数学〜中央大学2021年経済学部第1問(3)〜三角関数の最大

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1 (3)π2xπ2
のとき、次の関数が最大値をとるときのxの値を求めよ。
y=sinx+cos2x

2021中央大経済学部過去問
この動画を見る 

千葉県(改) 令和4年度 数学 関数 2022 入試問題100題解説73問目!!

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
長方形ACDBと長方形CEBFは合同
直線EFの式は?
*図は動画内参照

2022千葉県
この動画を見る 

京都大学 5倍角の公式

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#数Ⅱ#三角関数#三角関数とグラフ
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)cos5θ=f(cosθ)を満たす多項式f(n)を求めよ.
(2)cosπ10cos3π10cos7π10cos9π10=516を示せ.

1996京都大過去問
この動画を見る 
PAGE TOP preload imagepreload image