福田のおもしろ数学211〜証明しやすく変形するコツ〜不等式の証明 - 質問解決D.B.(データベース)

福田のおもしろ数学211〜証明しやすく変形するコツ〜不等式の証明

問題文全文(内容文):
$x>0, \, y>0, \, 0 < p < 1$ のとき、$(x+y)^p < x^p+y^p$ が成り立つことを示せ。
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$x>0, \, y>0, \, 0 < p < 1$ のとき、$(x+y)^p < x^p+y^p$ が成り立つことを示せ。
投稿日:2024.07.31

<関連動画>

解の公式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
解の公式の証明
$ax^2+bx+c = 0 \quad (a \neq 0) $
この動画を見る 

法政大 複素数の方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$8z^3=i$

2020法政(情報科)
この動画を見る 

【高校数学】 数Ⅱ-18 等式の証明③

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$x+y+z=3,xyz=3(xy+yz+zx)$のとき、x,y,zのうち少なくとも1つは 3に等しいことを証明しよう。

②$\displaystyle \frac{x+y}{z}=\displaystyle \frac{y+z}{x}=\displaystyle \frac{z+x}{y}$のとき、この式の値を求めよう。
この動画を見る 

【高校数学】  数Ⅱ-9  分数式の計算②

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎計算しよう。

①$\displaystyle \frac{x-5}{x-3}+\displaystyle \frac{2x-4}{x-3}$

②$\displaystyle \frac{x}{x+4}-\displaystyle \frac{2}{x-1}$

③$\displaystyle \frac{x+8}{x^2+x-2}+\displaystyle \frac{x-4}{x^2-x}$
この動画を見る 

【数Ⅱ】【微分法と積分法】積分方程式 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の等式を満たす関数 $f(x)$ を求めよ。

(1) $f(x)$ = $x$ + $\int_{0}^{3}$ $f(t)$ $dt$
(2) $f(x)$ = $\int_{1}^{3}$ {${2x - f(t)}$}$dt$
(3) $f(x)$ = $x^2$ - $\int_{0}^{2}$ $x$ $f(t)$ $dt$ + $2$$\int_{0}^{1}$ $f(t)$$dt$
(4) $f(x)$ = $1$ + $\int_{0}^{1} $$(x - t)$ $f(t)$$dt$
この動画を見る 
PAGE TOP