大阪市立(医)微分 接線と交点 - 質問解決D.B.(データベース)

大阪市立(医)微分 接線と交点

問題文全文(内容文):
$f(x)=x^4-4x^3+4x^2+1$
点$P(t,f(t))$における接点が$f(x)$と点$P$以外の異なる2点で交わる$t$の範囲は?

出典:大阪市立大学 医学部医学科 過去問
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4-4x^3+4x^2+1$
点$P(t,f(t))$における接点が$f(x)$と点$P$以外の異なる2点で交わる$t$の範囲は?

出典:大阪市立大学 医学部医学科 過去問
投稿日:2019.08.22

<関連動画>

福田の数学〜東京大学2018年理系第3問〜軌跡と領域そして極限

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#図形と方程式#軌跡と領域#ベクトルと平面図形、ベクトル方程式#関数と極限#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
放物線$y=x^2$のうち$-1 \leqq x \leqq 1$を満たす部分をCとする。座標平面上の原点Oと点A(1,0)を考える。K>0を実数とする。点PがCの上を動き、天Qが線分OA上を動くとき$\overrightarrow{ OR }=\displaystyle \frac{1}{k}\overrightarrow{ OP }+k\overrightarrow{ OQ }$を満たす点Rが動く領域の面積をS(k)とする。
S(k)および$\displaystyle \lim_{ k \to +0 } S(k) ,\displaystyle \lim_{ k \to \infty }S(k)$を求めよ。

2018東京大学理系過去問
この動画を見る 

【数学Ⅱ】複素数『1の3乗根ω』の性質と問題演習

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$x^3-1=0$の虚数解の1つを$\omega$とするとき、次の式の値を求めよ。
(1)
$\omega^4+\omega^2+1$

(2)
$1+\displaystyle \frac{1}{\omega}+\displaystyle \frac{1}{\omega^2}$
この動画を見る 

横浜市立(医) 正二十面体 面のなす角 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'94横浜市立大学過去問題
(1)正五角形ABCDEの一辺を1としたときのAD=ACの長さ
(2)正二十面体のとなり合う面のなす角をθとしたときのcosθの値
この動画を見る 

福田の数学〜青山学院大学2021年理工学部第3問〜領域における最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 連立方程式\\
\left\{
\begin{array}{1}
0 \leqq y \leqq 6  \\
y \geqq -x+7 \\
y \leqq -2x+14
\end{array}
\right.\\
\\
の表す領域をDとする。\\
(1)領域Dを図示せよ。\\
(2)点(x,\ y)が領域Dを動くとき、3x+2yの最大値と最小値を求めよ。\\
(3)点(x,\ y)が領域Dを動くとき、x^2-6x+2yの最大値と最小値を求めよ。
\end{eqnarray}

2021青山学院大学理工学部過去問
この動画を見る 

日本医科大 複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#日本医科大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\theta=\displaystyle \frac{\pi}{7}$ $z=\cos\theta+i \sin\theta$

(1)
$\cos\theta,\cos2\theta,\cos3\theta$を$z$で表せ

(2)
$\cos\theta・\cos2\theta・\cos3\theta$

(3)
$\cos\theta+\cos3\theta+\cos5\theta$の値を求めよ

出典:日本医科大学 過去問
この動画を見る 
PAGE TOP