奈良女子大 三次方程式の解 - 質問解決D.B.(データベース)

奈良女子大 三次方程式の解

問題文全文(内容文):
$x^3+mx^2+nx+1=0$は絶対値が1となる虚数解を持つ.
このとき整数(m,n)をすべて求めよ.

奈良女子大過去問
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#奈良女子大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3+mx^2+nx+1=0$は絶対値が1となる虚数解を持つ.
このとき整数(m,n)をすべて求めよ.

奈良女子大過去問
投稿日:2022.11.14

<関連動画>

神戸大 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
'93神戸大学過去問題
$a_1=0$
$a_{n+1}=3a_n+2^n-1$
(1)$b_n=\frac{a_n}{3^{n-1}}$
(2)一般項を求めよ
この動画を見る 

慈恵医大 3次方程式と虚数解 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$実数
$x^3+ax^2+(2+\sqrt{ 2 })x+b=0$の1つの解が$\displaystyle \frac{\sqrt{ 2 }+\sqrt{ 6 }\dot{ \iota }}{2}$
他の2解を$\alpha, \beta$
$a,b$および$\alpha^{10} +\beta^{10}$の値

出典:東京慈恵会医科大学 過去問
この動画を見る 

東工大 確率(超簡単)高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2010東京工業大学過去問題
1~nの自然数から任意の2つの数を選んだとき、小さい方の数が3の倍数である確率をP(n)とする。
(1)P(8)を求めよ。
(2)P(3k+2)をkで表せ
この動画を見る 

福田の入試問題解説〜北海道大学2022年文系第3問〜直角三角形と内接円

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ \angle A=90°,\angle B=60°である直角三角形ABCにおいて、\\
その内接円の中心をO、半径をrとおく。またa=BCとする。\\
(1)rをaで表せ。\\
(2)次の条件を満たす負でない整数k,l,m,nの組を一つ求めよ。\\
OA:OB=1:k+\sqrt{l},  OA:OC=1:m+\sqrt{n}
\end{eqnarray}

2022北海道大学文系過去問
この動画を見る 

京都大 三次方程式の解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$k\gt 0$であるとする.
$x(x+3)(x-3)+3k(x+1)(x-1)=0$が3つ実数解をもつことを示せ.

1967京都大(文理共通)過去問
この動画を見る 
PAGE TOP