奈良女子大 三次方程式の解 - 質問解決D.B.(データベース)

奈良女子大 三次方程式の解

問題文全文(内容文):
$x^3+mx^2+nx+1=0$は絶対値が1となる虚数解を持つ.
このとき整数(m,n)をすべて求めよ.

奈良女子大過去問
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#奈良女子大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3+mx^2+nx+1=0$は絶対値が1となる虚数解を持つ.
このとき整数(m,n)をすべて求めよ.

奈良女子大過去問
投稿日:2022.11.14

<関連動画>

福田の数学〜立教大学2024年経済学部第3問〜ベクトルと平面幾何

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
三角形$\mathrm{OAB}$において、$\mathrm{OA}=5,\mathrm{OB}=7,\mathrm{AB}=8$とする。また、$\mathrm{O}$を中心とする半径$r$の円$C$が直線$\mathrm{AB}$上の点$\mathrm{D}$で接している。さらに、$\mathrm{A}$から$C$へ引いた接線と$C$との接点を$\mathrm{E}$とする。ただし、$\mathrm{E}$は$\mathrm{D}$と異なる点とする。$\overrightarrow{\mathrm{OA}}=\vec{a}, \overrightarrow{\mathrm{OB}}=\vec{b}$とおくとき、次の問いに答えよ。
(1) 内積$\vec{a}\cdot \vec{b}$を求めよ。
(2) $\overrightarrow{\mathrm{OD}}$を$\overrightarrow{\mathrm{OD}}=(1-t)\vec{a}+t\vec{b}$と表すとき、定数$t$の値を求めよ。
(3)$r$の値を求めよ。
(4) $\mathrm{D}$から$\mathrm{OA}$へ下した垂線を$\mathrm{DH}$とする。$\overrightarrow{\mathrm{DH}}$を$\vec{a}$を用いて表せ。
(5) $\mathrm{OE}$を$\mathrm{OE}=p\vec{a}+q\vec{b}$と表すとき、定数$p,q$の値を求めよ。
この動画を見る 

2次の連立方程式 明大明治2023

アイキャッチ画像
単元: #数学(中学生)#連立方程式#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 -4y^2 -10x +25 = 0 \\
x^2 + x -6 -2xy + 4y = 0
\end{array}
\right.
\end{eqnarray}

(x,y)の組をすべて求めよ。
2023明治大学付属明治高等学校(改)
この動画を見る 

大学入試問題#365「さすがに小問」 旭川医科大学(2014) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#旭川医科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}log(x^2+1)dx$

出典:2014年旭川医科大学 入試問題
この動画を見る 

式の値 代入どうする? 京都産業大

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x=199,y=-98,z=102$のとき
$x^2+4xy+3y^2+z^2=?$

京都産業大学
この動画を見る 

【理数個別の過去問解説】1993年度京都大学 数学 理系後期第5問解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$n\geqq 3$とする。$1,2,...,n$のうちから重複を許して6個の数字を選びそれらを並べた順列を考える。このような順列のうちで、どの数字もそれ以外の5つの数字のどれかに等しくなっているようなものの個数を求めよう。
この動画を見る 
PAGE TOP