【数Ⅰ】【集合と論証】背理法の使い方 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【集合と論証】背理法の使い方 ※問題文は概要欄

問題文全文(内容文):
"$x,y,z$は実数とする。次の▢の中に、「必要十分条件であるが十分条件ではない」「十分条件であるが必要条件ではない」「必要十分条件である」「必要条件でも十分条件でもない」のうち、それぞれどれが適するか。

(1)$(x-y)(y-z)=0$は$x=y=z$であるための$\Box$
(2)$「x\gt 0 $かつ$y\gt 0」$は、$xy\gt 0$であるための$\Box$
(3)$x=y=0$は、$「xy=0$かつ$x+y=0」$であるための$\Box$
(4)$\angle A\lt 90$は$△ABC$が鋭角三角形であるための$\Box$
(5)$△ABC$の3辺$BC,CA,AB$の長さがそれぞれa$,b,c$とする。
   $(a-b)(a^2+b^2=c^2)=0$は$△ABC$が直角二等辺三角形であるための$\Box$


$a,b$は実数とする。次の2つの条件$p,q$は同値であることを証明せよ。
$p:a\gt 1$かつ$b\gt 1$  $q:a+b\gt 2$かつ$(a-1)(b-1)\gt 0$
チャプター:

00:00~ 1問目 
06:35~ 2問目

単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
"$x,y,z$は実数とする。次の▢の中に、「必要十分条件であるが十分条件ではない」「十分条件であるが必要条件ではない」「必要十分条件である」「必要条件でも十分条件でもない」のうち、それぞれどれが適するか。

(1)$(x-y)(y-z)=0$は$x=y=z$であるための$\Box$
(2)$「x\gt 0 $かつ$y\gt 0」$は、$xy\gt 0$であるための$\Box$
(3)$x=y=0$は、$「xy=0$かつ$x+y=0」$であるための$\Box$
(4)$\angle A\lt 90$は$△ABC$が鋭角三角形であるための$\Box$
(5)$△ABC$の3辺$BC,CA,AB$の長さがそれぞれa$,b,c$とする。
   $(a-b)(a^2+b^2=c^2)=0$は$△ABC$が直角二等辺三角形であるための$\Box$


$a,b$は実数とする。次の2つの条件$p,q$は同値であることを証明せよ。
$p:a\gt 1$かつ$b\gt 1$  $q:a+b\gt 2$かつ$(a-1)(b-1)\gt 0$
投稿日:2024.11.06

<関連動画>

一発でできる!二重根号のはずし方

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
二重根号のはずし方に関して解説していきます.
この動画を見る 

福田の数学〜北里大学2021年医学部第1問(1)〜空間ベクトルの内積と平面に下ろした垂線の長さ

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#図形と計量#三角比(三角比・拡張・相互関係・単位円)#平面上のベクトルと内積#空間ベクトル#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)一辺の長さが4の正四面体ABCDにおいて、辺BCの中点をEとおく。
動点Pは$PE=\frac{1}{2}AE$を満たしながら$\triangle AED$の内部および周上を動くものとし、
$\angle PED=\theta$とおく。このとき、$\overrightarrow{ PB }・\overrightarrow{ PC }=\boxed{ア}$である。また、$\overrightarrow{ PB }・\overrightarrow{ PC }$を
$\theta$を用いて表すと$\overrightarrow{ PC }・\overrightarrow{ PD }=\boxed{イ}$、その最大値は$\boxed{ウ}$である。
$\overrightarrow{ PC }・\overrightarrow{ PD }$が最大となるときの点Pと平面ACDの距離は$\boxed{エ}$である。

2021北里大学医学部過去問
この動画を見る 

福田の数学〜九州大学2022年文系第1問〜絶対値の付いた放物線と直線で囲まれた面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#2次関数#微分法と積分法#解と判別式・解と係数の関係#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):
aを$-3 \lt a \lt 13$を満たす実数とし、次の曲線Cと直線lが接しているとする。
$C:y=|x^2+(3-a)x-3a|, l:y=-x+13$
以下の問いに答えよ。
(1)aの値を求めよ。
(2)曲線Cと直線lで囲まれた2つの図形のうち、点(a,0)が境界線上にある図形の面積を求めよ。

2022九州大学文系過去問
この動画を見る 

失敗しないたすきがけ因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
たすきがけ因数分解に関して解説していきます.
この動画を見る 

京都府立医大 二次関数の最大値

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m$は自然数の定数である.
$f(x)=-(m+1)x^2+(m^2+3)x$
変数$x$が整数値のみとるときの$f(x)$の最大値を求めよ.

1993京都府立医大過去問
この動画を見る 
PAGE TOP