問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ tを正の実数とする。座標平面上に放物線C_1:y=x^2とその上の点P(t,\ t^2)がある。\\
PにおけるC_1の接線をlとし、法線をmとする。lとx軸との交点をQとする。\hspace{32pt}\\
Pにおいてlに接し、さらにx軸にも接する円で、中心のx座標がt以下であるものをC_2\\
とする。C_2の中心をAとし、C_2とx軸の接点をBとする。\hspace{110pt}\\
(1)lの方程式を求めよ。\hspace{245pt}\\
(2)mの方程式を求めよ。\hspace{239pt}\\
(3)\angle BAP=\frac{\pi}{3}であるとき、tの値を求めよ。\hspace{155pt}\\
(4)(3)のとき、Aの座標を求めよ。\hspace{201pt}\\
(5)(3)のとき、四角形ABQPの面積を求めよ。\hspace{151pt}
\end{eqnarray}
2022立教大学理学部過去問
\begin{eqnarray}
{\large\boxed{3}}\ tを正の実数とする。座標平面上に放物線C_1:y=x^2とその上の点P(t,\ t^2)がある。\\
PにおけるC_1の接線をlとし、法線をmとする。lとx軸との交点をQとする。\hspace{32pt}\\
Pにおいてlに接し、さらにx軸にも接する円で、中心のx座標がt以下であるものをC_2\\
とする。C_2の中心をAとし、C_2とx軸の接点をBとする。\hspace{110pt}\\
(1)lの方程式を求めよ。\hspace{245pt}\\
(2)mの方程式を求めよ。\hspace{239pt}\\
(3)\angle BAP=\frac{\pi}{3}であるとき、tの値を求めよ。\hspace{155pt}\\
(4)(3)のとき、Aの座標を求めよ。\hspace{201pt}\\
(5)(3)のとき、四角形ABQPの面積を求めよ。\hspace{151pt}
\end{eqnarray}
2022立教大学理学部過去問
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#円と方程式#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ tを正の実数とする。座標平面上に放物線C_1:y=x^2とその上の点P(t,\ t^2)がある。\\
PにおけるC_1の接線をlとし、法線をmとする。lとx軸との交点をQとする。\hspace{32pt}\\
Pにおいてlに接し、さらにx軸にも接する円で、中心のx座標がt以下であるものをC_2\\
とする。C_2の中心をAとし、C_2とx軸の接点をBとする。\hspace{110pt}\\
(1)lの方程式を求めよ。\hspace{245pt}\\
(2)mの方程式を求めよ。\hspace{239pt}\\
(3)\angle BAP=\frac{\pi}{3}であるとき、tの値を求めよ。\hspace{155pt}\\
(4)(3)のとき、Aの座標を求めよ。\hspace{201pt}\\
(5)(3)のとき、四角形ABQPの面積を求めよ。\hspace{151pt}
\end{eqnarray}
2022立教大学理学部過去問
\begin{eqnarray}
{\large\boxed{3}}\ tを正の実数とする。座標平面上に放物線C_1:y=x^2とその上の点P(t,\ t^2)がある。\\
PにおけるC_1の接線をlとし、法線をmとする。lとx軸との交点をQとする。\hspace{32pt}\\
Pにおいてlに接し、さらにx軸にも接する円で、中心のx座標がt以下であるものをC_2\\
とする。C_2の中心をAとし、C_2とx軸の接点をBとする。\hspace{110pt}\\
(1)lの方程式を求めよ。\hspace{245pt}\\
(2)mの方程式を求めよ。\hspace{239pt}\\
(3)\angle BAP=\frac{\pi}{3}であるとき、tの値を求めよ。\hspace{155pt}\\
(4)(3)のとき、Aの座標を求めよ。\hspace{201pt}\\
(5)(3)のとき、四角形ABQPの面積を求めよ。\hspace{151pt}
\end{eqnarray}
2022立教大学理学部過去問
投稿日:2022.09.16