福田の数学〜立教大学2022年理学部第3問〜接線法線と囲まれた部分の面積 - 質問解決D.B.(データベース)

福田の数学〜立教大学2022年理学部第3問〜接線法線と囲まれた部分の面積

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ tを正の実数とする。座標平面上に放物線C_1:y=x^2とその上の点P(t,\ t^2)がある。\\
PにおけるC_1の接線をlとし、法線をmとする。lとx軸との交点をQとする。\hspace{32pt}\\
Pにおいてlに接し、さらにx軸にも接する円で、中心のx座標がt以下であるものをC_2\\
とする。C_2の中心をAとし、C_2とx軸の接点をBとする。\hspace{110pt}\\
(1)lの方程式を求めよ。\hspace{245pt}\\
(2)mの方程式を求めよ。\hspace{239pt}\\
(3)\angle BAP=\frac{\pi}{3}であるとき、tの値を求めよ。\hspace{155pt}\\
(4)(3)のとき、Aの座標を求めよ。\hspace{201pt}\\
(5)(3)のとき、四角形ABQPの面積を求めよ。\hspace{151pt}
\end{eqnarray}

2022立教大学理学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#円と方程式#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ tを正の実数とする。座標平面上に放物線C_1:y=x^2とその上の点P(t,\ t^2)がある。\\
PにおけるC_1の接線をlとし、法線をmとする。lとx軸との交点をQとする。\hspace{32pt}\\
Pにおいてlに接し、さらにx軸にも接する円で、中心のx座標がt以下であるものをC_2\\
とする。C_2の中心をAとし、C_2とx軸の接点をBとする。\hspace{110pt}\\
(1)lの方程式を求めよ。\hspace{245pt}\\
(2)mの方程式を求めよ。\hspace{239pt}\\
(3)\angle BAP=\frac{\pi}{3}であるとき、tの値を求めよ。\hspace{155pt}\\
(4)(3)のとき、Aの座標を求めよ。\hspace{201pt}\\
(5)(3)のとき、四角形ABQPの面積を求めよ。\hspace{151pt}
\end{eqnarray}

2022立教大学理学部過去問
投稿日:2022.09.16

<関連動画>

福田の一夜漬け数学〜図形と方程式〜円の方程式(7)接線の公式と極線の公式、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (1)円$x^2+y^2=25$ 上の点$(-4,3)$における接線の方程式を求めよ。
(2)円$x^2+y^2-2x+6y=0$ 上の点$(2,-6)$における接線の方程式を求めよ。
(3)円$x^2+y^2=25$ $\cdots$①の外部の点$A(3,8)$から円①に2本の接線を引き、
その2つの接点を$P,Q$とする。直線$PQ$の方程式を求めよ。
この動画を見る 

【数Ⅱ】円の接線【流れを覚えて自分で導出する】

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ x^2+y^2=25上の点(3,4)における接線lの方程式を求めよ.$
この動画を見る 

福田のわかった数学〜高校2年生025〜2つの円の位置関係

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 2つの円の位置関係
円$C_1:x^2+y^2=1$
円$C_2:x^2+y^2-6x+8y+k=0$
が接するとき、定数$k$の値と接点の座標を求めよ。
この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第4問(2)〜線形計画法

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#円と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} (2)\ 野菜Aには1個あたり栄養素x_1が8g、栄養素x_2が4g、栄養素x_3が2g\\
含まれ、野菜Bには1個あたり栄養素x_1が4g、栄養素x_2が6g、栄養素x_3\\
が6g含まれている。これら2種類の野菜をそれぞれ何個かずつ選んで\\
ミックスし野菜ジュースを作る。選んだ野菜は丸ごと全て用い、栄養素x_1\\
を42g以上、栄養素x_2を48g以上、栄養素x_3を30g以上含まれるように\\
したい。野菜Aの個数と野菜Bの個数の和をなるべく小さくしてジュース\\
を作るとき、野菜Aの個数a、野菜Bの個数bの組(a,\ b)は\\
\\
(a,\ b)=(\boxed{\ \ ヘ\ \ },\ \boxed{\ \ ホ\ \ }), (\boxed{\ \ マ\ \ },\ \boxed{\ \ ミ\ \ })\\
\\
である。ただし、 \boxed{\ \ ヘ\ \ } \lt \boxed{\ \ マ\ \ }とする。
\end{eqnarray}

2021上智大学文系過去問
この動画を見る 

【数Ⅱ】図形と方程式:円:円と方程式:円x²+y²=5と直線 2x+1=2の2つの交点を結ぶ線分の長さlを求めよ。

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
教材: #PRIME数学#PRIME数学Ⅱ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
【数Ⅱ】図形と方程式:円:円と方程式:円x²+y²=5と直線 2x+1=2の2つの交点を結ぶ線分の長さlを求めよ。
この動画を見る 
PAGE TOP