福田のわかった数学〜高校3年生理系091〜グラフを描こう(13)指数関数、凹凸、漸近線 - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系091〜グラフを描こう(13)指数関数、凹凸、漸近線

問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} グラフを描こう(13)\hspace{50pt}\\
\\
y=e^{\frac{1}{x^2-1}} (-1 \lt x \lt 1)\\
\\
のグラフを描け。凹凸、漸近線を調べよ。
\end{eqnarray}
単元: #数Ⅱ#指数関数と対数関数#指数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} グラフを描こう(13)\hspace{50pt}\\
\\
y=e^{\frac{1}{x^2-1}} (-1 \lt x \lt 1)\\
\\
のグラフを描け。凹凸、漸近線を調べよ。
\end{eqnarray}
投稿日:2021.11.04

<関連動画>

指数法則

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$10^a=4$のとき
$10^{1+2a}$=

ア 26 イ 40 ウ 160 エ 109
この動画を見る 

福田の数学〜慶應義塾大学2024年経済学部第3問〜指数関数で定義された数列の漸化式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ 実数$a$に対して$f(a)$=$\displaystyle\frac{1}{2}(2^a-2^{-a})$とおく。また、$A$=$2^a$とする。
(1)等式$\displaystyle\left(A-\frac{1}{A}\right)^3$=$\displaystyle\boxed{\ \ ア\ \ }\left(A-\frac{1}{A}\right)^3$-$\displaystyle\boxed{\ \ イ\ \ }\left(A-\frac{1}{A}\right)$ より、実数$a$に対して
$\left\{f(a)\right\}^3$=$\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}f(3a)$-$\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}f(a)$ ...①が成り立つ。
(2)実数$a$,$b$に対して$f(a)$=$b$が成り立つならば、$A$=$2^a$は2次方程式
$A^2$-$\boxed{\ \ キ\ \ }bA$-$\boxed{\ \ ク\ \ }$=0
を満たす。$2^a$>0より、$a$は$b$を用いて
$a$=$\log_2\left(\boxed{\ \ ケ\ \ }b+\sqrt{b^2+\boxed{\ \ コ\ \ }}\right)$ ...②
と表せる。つまり、任意の実数bに対して$f(a)$=$b$となる実数$a$が、ただ1つに定まる。
以下、数列$\left\{a_n\right\}$に対して$f(a_n)$=$b_n$ ($n$=1,2,3,...)で定まる数列$\left\{b_n\right\}$が、関係式
$4b_{n+1}^3$+$3b_{n+1}$-$b_n$=0 ($n$=1,2,3,...) ...③
を満たすとする。
(3)①と③から$f\left(\boxed{\ \ サ\ \ }a_{n+1}\right)$=$f(a_n)$ ($n$=1,2,3,...)となるので、(2)より、
$a_n$=$\displaystyle\frac{a_1}{\boxed{\ \ シ\ \ }^{n-p}}$ ($n$=1,2,3,...)が得られる。ここで、$p$=$\boxed{\ \ ス\ \ }$である。
(4)$n$≧2に対して、$S_n$=$\displaystyle\sum_{k=2}^n3^{k-1}b_k^3$ とおく。$c_n$=$3^nb_n$ ($n$=1,2,3,...)で定まる数列$\left\{c_n\right\}$の階差数列を用いると、③より、
$S_n$=$\frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソ\ \ }}b_1$-$\frac{\boxed{\ \ タ\ \ }^n}{\boxed{\ \ チ\ \ }}b_n$ ($n$=2,3,4,...)
となる。ゆえに、$b_1$=$\displaystyle\frac{4}{3}S_5$-108 が成り立つならば$a_1$=$\boxed{\ \ ツテト\ \ }\log_2\boxed{\ \ ナ\ \ }$ である。
この動画を見る 

福田のわかった数学〜高校3年生理系101〜大小比較(1)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 大小比較(1)\\
999^{1000}と1000^{999}\\
の大小を比較せよ。
\end{eqnarray}
この動画を見る 

高校範囲だけど、中学生も解ける!!

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$10^x+10^x = 10^4$のとき
$10^{x-2} = ?$

この動画を見る 

福田の数学〜慶應義塾大学2021年薬学部第3問〜3次関数と接線

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} xy平面上に、xの関数\\
f(x)=x^3+(a+4)x^2+(4a+6)x+4a+2\\
のグラフy=f(x)がある。y=f(x)が任意のaに対して\\
通る定点をP、点Pにおける接線がy=f(x)と交わる点をQとおく。\\
(1)点Pの座標は\boxed{\ \ ツ\ \ }であり、点Pにおける接線の方程式はy=\boxed{\ \ テ\ \ }である。\\
(2)a=5のとき、y=f(x)上の点における接線は、x=\boxed{\ \ ト\ \ }において傾きが\\
最小になる。\\
(3)x=\boxed{\ \ ト\ \ }においてf(x)が極値をとるとき、a=\boxed{\ \ ナ\ \ }であり、\\
点(\boxed{\ \ ト\ \ },f(\boxed{\ \ ト\ \ }))をSとおくと、三角形SPQの面積は\boxed{\ \ ニ\ \ }である。\\
\end{eqnarray}

2021慶應義塾大学薬学部過去問
この動画を見る 
PAGE TOP