【数学Ⅱ/積分】定積分の基本 - 質問解決D.B.(データベース)

【数学Ⅱ/積分】定積分の基本

問題文全文(内容文):
次の定積分を求めよ。
(1)
$\displaystyle \int_{1}^{3} (-4x)dx$

(2)
$\displaystyle \int_{1}^{2} (x^2+3x+2)dx$

(3)
$\displaystyle \int_{-1}^{2} (x^2+3x)dx-\displaystyle \int_{-1}^{2} (x^2-x)dx$
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の定積分を求めよ。
(1)
$\displaystyle \int_{1}^{3} (-4x)dx$

(2)
$\displaystyle \int_{1}^{2} (x^2+3x+2)dx$

(3)
$\displaystyle \int_{-1}^{2} (x^2+3x)dx-\displaystyle \int_{-1}^{2} (x^2-x)dx$
投稿日:2022.02.22

<関連動画>

#数検準1級1次_4#不定積分

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{1}{x(x^2+1)} dx$

出典:数検準1級1次
この動画を見る 

#藤田医科大学2023#定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#藤田医科大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \sin^5x$ $dx$

出典:2023年藤田医科大学
この動画を見る 

#宮崎大学2024#定積分_17#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#宮崎大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{3}} \cos^2\displaystyle \frac{x}{4} dx$

出典:2024年宮崎大学
この動画を見る 

【高校数学】毎日積分32日目【共通テスト直前特別編】【毎日17時投稿】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
偶関数・奇関数の積分について解説していきます.
この動画を見る 

福田の数学〜慶應義塾大学2022年環境情報学部第3問〜4次関数のグラフの接線と囲まれた面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ xy平面上の曲線Cをy=x^2(x-1)(x+2)とする。
\\(1)Cに2点で下から接する直線Lの方程式は\\
\\
y=\frac{\boxed{\ \ アイウ\ \ }}{\boxed{\ \ エオカ\ \ }}\ x+\frac{\boxed{\ \ キクケ\ \ }}{\boxed{\ \ コサシ\ \ }}\ である。\\
\\
(2)CとLが囲む図の斜線部分の面積(※動画参照)は\\
\\
\frac{\boxed{\ \ スセソ\ \ }\sqrt{\boxed{\ \ タチツ\ \ }}}{\boxed{\ \ テトナ\ \ }}\ となる。\\
\\
ただし、次の公式を使ってもかまわない(m,nは正の整数)\\
\int_{\alpha}^{\beta}(x-\alpha)^m(x-\beta)^ndx=\frac{(-1)^nm!n!}{(m+n+1)!}(\beta-\alpha)^{m+n+1}\\
\end{eqnarray}

2022慶應義塾大学環境情報学部過去問
この動画を見る 
PAGE TOP