#5 回転体の良問 By にっし~Diaryさん - 質問解決D.B.(データベース)

#5 回転体の良問 By にっし~Diaryさん

問題文全文(内容文):
$f(x)=\displaystyle \frac{1}{xe^x}(x \gt 0)$
(1)$f(x)$は単調減少関数であることを示し、$y=f(x)$のグラフをかけ
(2)曲線$y=f(x)$と2直線$y=\displaystyle \frac{1}{e},\ y=\displaystyle \frac{1}{3e^3},$及び$y$軸で囲まれた図形を$y$軸を中心に一回転してできる立体の体積$V$を求めよ。
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)=\displaystyle \frac{1}{xe^x}(x \gt 0)$
(1)$f(x)$は単調減少関数であることを示し、$y=f(x)$のグラフをかけ
(2)曲線$y=f(x)$と2直線$y=\displaystyle \frac{1}{e},\ y=\displaystyle \frac{1}{3e^3},$及び$y$軸で囲まれた図形を$y$軸を中心に一回転してできる立体の体積$V$を求めよ。
投稿日:2023.11.04

<関連動画>

福田のわかった数学〜高校3年生理系107〜変化率(2)水の問題(1)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 変化率(2) 水の問題(1)
$y=x^2$ をy軸の周りに回転させてできる容器に、
毎秒$1cm^3$の割合で水を入れる。水面の半径が
3cmになったときの水面の上昇速度と水面の面積の増加速度を求めよ。
この動画を見る 

大学入試問題#224 防衛医科大学(2015) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#防衛医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{dx}{x^2+x+1}$を計算せよ

出典:2015年防衛医科大学 入試問題
この動画を見る 

福田の数学〜東京医科歯科大学2024医学部第3問〜定積分の性質と置換積分の計算の解

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$\fbox{3} f(x)$を連続関数とするとき、次の各問いに答えよ。
(1)次の等式を示せ。$\displaystyle \int_{0}^{ \frac{\pi}{2} } f(\sin 2x)\sin x dx=\displaystyle \int_{0}^{ \frac{\pi}{2} } f(\sin 2x)\cos x dx$
(2)次の等式を示せ。$\displaystyle \int_{0}^{ \frac{\pi}{2} } f(\sin 2x)(\sin x+\cos x) dx=\displaystyle \int_{-1}^{1} f(1-t^2)dt$
(3)次の定積分の値を求めよ。$\displaystyle \int_{0}^{ \frac{\pi}{2} } \frac{\sin x}{1+\sqrt{\sin 2x}} dx$
この動画を見る 

福田の数学〜京都大学2022年理系第5問〜方程式の解と不等式の証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#恒等式・等式・不等式の証明#解と判別式・解と係数の関係#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
曲線$C:y=\cos^3x$ $(0 \leqq x \leqq \frac{\pi}{2})$,x軸およびy軸で囲まれる図形の面s系をS
とする。$0 \lt t \lt \frac{\pi}{2}$とし、C上の点Q$(t,\cos^3t)$と原点O,およびP$(t,o),R(0,\cos^3t)$
を頂点にもつ長方形OPQRの面積をf(t)とする。このとき、次の問いに答えよ。
(1)Sを求めよ。
(2)$f(t)$は最大値をただ一つのtでとることを示せ。そのときのtを$\alpha$とすると、
$f(\alpha)=\frac{\cos^4\alpha}{3\sin\alpha}$ であることを示せ。
(3)$\frac{f(\alpha)}{S} \lt \frac{9}{16}$ を示せ。

2022京都大学理系過去問
この動画を見る 

福田の数学〜慶應義塾大学2023年医学部第3問〜接線が作る三角形

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#三角形の辺の比(内分・外分・二等分線)#図形と方程式#微分法と積分法#軌跡と領域#接線と増減表・最大値・最小値#関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#定積分#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 座標平面上の曲線y=$\frac{1}{x^2}$ (x $\ne$ 0)をCとする。$a_1$を正の実数とし、点$A_1$$\left(a_1, \frac{1}{a_1^2}\right)$におけるCの接線を$l_1$とする。$l_1$とCの交点で$A_1$と異なるものを$A_2$$\left(a_2, \frac{1}{a_2^2}\right)$とする。次に点$A_2$におけるCの接線を$l_2$とCの交点で$A_2$と異なるものを$A_3$$\left(a_3, \frac{1}{a_3^2}\right)$とする。以下、同様にしてn=3,4,5,...に対して、$A_n$$\left(a_n, \frac{1}{a_n^2}\right)$におけるCの接線を$l_n$とし、$l_n$とCの交点で$A_n$と異なるものを$A_{n+1}$$\left(a_{n+1}, \frac{1}{a_{n+1}^2}\right)$とする。
(1)$\frac{a_2}{a_1}$=$\boxed{\ \ あ\ \ }$であり、$\frac{a_3}{a_1}$=$\boxed{\ \ い\ \ }$である。
(2)$a_n$を$a_1$で表すと$a_n$=$\boxed{\ \ う\ \ }$である。無限級数$\displaystyle\sum_{n=1}^{\infty}a_n$の和をTを$a_1$を用いて表すとT=$\boxed{\ \ え\ \ }$である。
(3)$a_1$を正の実数すべてにわたって動かすとき、三角形$A_1A_2A_3$の重心が描く軌跡の方程式をy=f(x)の形で求めるとf(x)=$\boxed{\ \ お\ \ }$となる。
(4)三角形$A_1A_2A_3$が鋭角三角形になるための条件は$\boxed{\ \ か\ \ }$<$a_1$<$\boxed{\ \ き\ \ }$である。
(5)x軸上に2点$A'_1$($a_1$, 0), $A'_2$($a_2$, 0)をとり、台形$A_1A_2A'_2A'_1$の面積を$S_1$とする。また、点$A_1$から点$A_3$にいたる曲線Cの部分、および線分$A_3A_2$と$A_2A_1$で囲まれた図形の面積を$S_2$とする。このとき、$S_1$:$S_2$=$\boxed{\ \ く\ \ }$:$\boxed{\ \ け\ \ }$である。ただし、$\boxed{\ \ く\ \ }$と$\boxed{\ \ け\ \ }$は互いに素な自然数である。

2023慶應義塾大学医学部過去問
この動画を見る 
PAGE TOP