#5 回転体の良問 By にっし~Diaryさん - 質問解決D.B.(データベース)

#5 回転体の良問 By にっし~Diaryさん

問題文全文(内容文):
$f(x)=\displaystyle \frac{1}{xe^x}(x \gt 0)$
(1)$f(x)$は単調減少関数であることを示し、$y=f(x)$のグラフをかけ
(2)曲線$y=f(x)$と2直線$y=\displaystyle \frac{1}{e},\ y=\displaystyle \frac{1}{3e^3},$及び$y$軸で囲まれた図形を$y$軸を中心に一回転してできる立体の体積$V$を求めよ。
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)=\displaystyle \frac{1}{xe^x}(x \gt 0)$
(1)$f(x)$は単調減少関数であることを示し、$y=f(x)$のグラフをかけ
(2)曲線$y=f(x)$と2直線$y=\displaystyle \frac{1}{e},\ y=\displaystyle \frac{1}{3e^3},$及び$y$軸で囲まれた図形を$y$軸を中心に一回転してできる立体の体積$V$を求めよ。
投稿日:2023.11.04

<関連動画>

大学入試問題#515「この問題は結構有名?」 名古屋大学(2005) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi} \displaystyle \frac{x\ \sin^3x}{4-\cos^2x} dx$

出典:2005年名古屋大学 入試問題
この動画を見る 

【数Ⅲ】【積分とその応用】シュワルツの不等式{∫[a→b]f(x)g(x)dx}²≦(∫[a→b]{f(x)}²dx)(∫[a→b]{g(x)}²dx) を利用して、次の不等式が成り立つことを証明せよ

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
シュワルツの不等式
\[
\left\{ \int_a^b f(x)g(x) \, dx \right\}^2 \leq
\left( \int_a^b \{ f(x) \}^2 dx \right)
\left( \int_a^b \{ g(x) \}^2 dx \right) \quad (a < b)
\]

を利用して、\( 0 < a < b, \, h(x) > 0 \) のとき、次の不等式が成り立つことを証明せよ。

(1)
\[
(b - a)^2 < \int_a^b x^2 \, dx \int_a^b \frac{dx}{x^2}
\]

(2)
\[
(b - a)^2 \leq \int_a^b h(x) \, dx \int_a^b \frac{dx}{h(x)}
\]
この動画を見る 

根性のみで解く積分

アイキャッチ画像
単元: #積分とその応用#定積分#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{1}{x^3+1} dx$
この動画を見る 

大学入試問題#213 広島市立大学(2015) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#広島市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}e^{-\sqrt{ 1-x }}dx$を計算せよ。

出典:2015年広島市立大学 入試問題
この動画を見る 

【数Ⅲ-133】不定積分①(準備運動編)

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(不定積分①・準備運動編)

Q.次の不定積分を求めよ

①$\int 5x^2dx$

➁$\int (8x^3+x^2-6x+5)dx$

③$\int (\frac{1}{x^3}-\sqrt{x})dx$

④$\int (\frac{6x^4-3}{x^2})dx$

⑤$\int \frac{(x-1)^2}{x^3}dx$

⑥$\int (\frac{x-2}{x})^2dx$
この動画を見る 
PAGE TOP