東大 積分 Mathematics Japanese university entrance exam Tokyo University - 質問解決D.B.(データベース)

東大 積分 Mathematics Japanese university entrance exam Tokyo University

問題文全文(内容文):
$0 \leqq a \leqq \beta$ 実数

$f(x)=x^2-(a+ \beta)z+a \beta$

$\displaystyle \int_{-1}^{ 1 }f(x)dx=1$が成立している。

定積分$s=\displaystyle \int_{0}^{ a }f(x)ax$を$a$の式で表し、$S$の最大値を求めよ。


出典:2008年東京大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$0 \leqq a \leqq \beta$ 実数

$f(x)=x^2-(a+ \beta)z+a \beta$

$\displaystyle \int_{-1}^{ 1 }f(x)dx=1$が成立している。

定積分$s=\displaystyle \int_{0}^{ a }f(x)ax$を$a$の式で表し、$S$の最大値を求めよ。


出典:2008年東京大学 過去問
投稿日:2019.02.18

<関連動画>

慶應(類)積分 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=3\displaystyle \int_{x-1}^{ x }(t+|t|)(t+|t|-1)dt$

(1)
$y=f(x)$のグラフをかけ

(2)
$y=f(x)$と$x$軸とで囲まれる面積を求めよ

出典:慶應義塾 過去問
この動画を見る 

#茨城大学2024#定積分_8#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \cos\theta\sin 2 \theta d \theta$

出典:2024年茨城大学後期
この動画を見る 

積分 帯広畜産大

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4-4x^2-4x+3$と2点で接する直線の方程式を$g(x)$とする.
$f(x)$と$g(x)$で囲まれた面積を求めよ.

1979帯広畜産大過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年経済学部第6問〜定積分で表された関数と面積の2等分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{6}}$関数$F(x)=\frac{1}{2}+\int_0^{x+1}(|t-1|-1)dt$に対し、
$y=F(x)$で定まる曲線をCとする。
(1)$F(x)$を求めよ。
(2)$C$と$x$軸の共有点のうち、x座標が最小の点をP、最大の点をQ
とする。PにおけるCの接線をlとするとき、Cとlで囲まれた図形の面積Sを求めよ。
また、Qを通る直線mがSを2等分するとき、lとmの交点Rの座標を求めよ。

2022慶應義塾大学経済学部過去問
この動画を見る 

#高専_3#定積分#元高専教員

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1} (e^x-e^{-x})^2(e^x+e^{-x}) dx$
この動画を見る 
PAGE TOP