東大 積分 Mathematics Japanese university entrance exam Tokyo University - 質問解決D.B.(データベース)

東大 積分 Mathematics Japanese university entrance exam Tokyo University

問題文全文(内容文):
$0 \leqq a \leqq \beta$ 実数

$f(x)=x^2-(a+ \beta)z+a \beta$

$\displaystyle \int_{-1}^{ 1 }f(x)dx=1$が成立している。

定積分$s=\displaystyle \int_{0}^{ a }f(x)ax$を$a$の式で表し、$S$の最大値を求めよ。


出典:2008年東京大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$0 \leqq a \leqq \beta$ 実数

$f(x)=x^2-(a+ \beta)z+a \beta$

$\displaystyle \int_{-1}^{ 1 }f(x)dx=1$が成立している。

定積分$s=\displaystyle \int_{0}^{ a }f(x)ax$を$a$の式で表し、$S$の最大値を求めよ。


出典:2008年東京大学 過去問
投稿日:2019.02.18

<関連動画>

#関西学院大学2019#不定積分_67

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#関西学院大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \dfrac{(\log x)^2}{x^2} dx$を解け.

2019関西学院大学過去問
この動画を見る 

重積分⑧-5 #154 【一般の変数変換(難)】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\iint_D \ xy\ dx\ dy$
$D:y=x^2,2y=x^2,x=y^2,2x=y^2$で囲まれた領域を求めよ.
この動画を見る 

埼玉大 微分・積分 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#埼玉大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4-9x^2$
$f(x)$の接線で$(3,0)$を通り、接点の$x$座標が負のものを$y=ax+b$
接点の$x$座標を$p$とする。
$\displaystyle \int_{p}^{ 3 }|f(x)-(ax+b)|dx$の値

出典:2008年埼玉大学 過去問
この動画を見る 

#茨城大学2024#定積分_2#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1} x^3(x+2)^2 dx$

出典:2024年茨城大学後期
この動画を見る 

#高専 #定積分_71

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{0} \dfrac{dx}{\sqrt{x^2+2x+2}}$を解け.

高専定期試験
この動画を見る 
PAGE TOP