福田の一夜漬け数学〜図形と方程式〜直線の方程式(7)点と直線の距離の公式と面積公式、高校2年生 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜図形と方程式〜直線の方程式(7)点と直線の距離の公式と面積公式、高校2年生

問題文全文(内容文):
${\Large\boxed{1}}$ 放物線$y=x^2$上の点$P$と、直線$x-2y-4=0$上の点との距離の最小値を
求めよ。また、そのときの点$P$の座標を求めよ。

${\Large\boxed{2}}$ $O(0,0),A(a,b),B(c,d)$とする。
(1)$\triangle OAB$の面積を$S$とする。$S=\displaystyle \frac{1}{2}|ad-bc|$であることを証明せよ。
(2)(1)を利用して、$A(3,5),B(5,2),C(1,1)$に対し、$\triangle ABC$の面積を求めよ。
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 放物線$y=x^2$上の点$P$と、直線$x-2y-4=0$上の点との距離の最小値を
求めよ。また、そのときの点$P$の座標を求めよ。

${\Large\boxed{2}}$ $O(0,0),A(a,b),B(c,d)$とする。
(1)$\triangle OAB$の面積を$S$とする。$S=\displaystyle \frac{1}{2}|ad-bc|$であることを証明せよ。
(2)(1)を利用して、$A(3,5),B(5,2),C(1,1)$に対し、$\triangle ABC$の面積を求めよ。
投稿日:2018.07.23

<関連動画>

福田の数学〜早稲田大学2022年教育学部第3問〜円の外接円の半径と円周上の点と原点の距離の最大最小

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形と方程式#点と直線#円と方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ O(0,0),\ A(0,1),\ B(p,q)を座標平面上の点とし、pは0でないとする。\hspace{50pt}\\
AとBを通る直線をlとおく。Oを中心としlに接する円の面積をD_1で表す。\hspace{40pt}\\
また、3点O,A,Bを通る円周で囲まれる円の面積をD_2とおく。次の問いに答えよ。\hspace{4pt}\\
(1)D_1をp,qを使って表せ。\hspace{220pt}\\
(2)点(2,2\sqrt3)を中心とする半径1の円周をCとする。点BがC上を動くときの\hspace{24pt}\\
D_1とD_2の積D_1D_2の最小値と最大値を求めよ。\hspace{130pt}
\end{eqnarray}

2022早稲田大学教育学部過去問
この動画を見る 

【数Ⅱ】2つの円の位置関係・交点を通る直線または円の方程式【知らないと解けない知識問題】

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#円と方程式#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ 2円x^2+y^2-10=0,x^2+y^2+2x-2y-6=0が2点で交わることを示せ.$
この動画を見る 

福田の数学〜神戸大学2022年理系第4問〜双曲線が直線から切り取る弦の中点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#点と直線#軌跡と領域#2次曲線#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ aを正の実数とし、双曲線\frac{x^2}{4}-\frac{y^2}{4}=1と直線y=\sqrt ax+\sqrt aが異なる2点P,Q\\
で交わっているとする。線分PQの中点をR(s,t)とする。以下の問いに答えよ。\\
(1)aの取りうる値の範囲を求めよ。\\
(2)s,tの値をaを用いて表せ。\\
(3)aが(1)で求めた範囲を動くときにsのとりうる値の範囲を求めよ。\\
(4)tの値をsを用いて表せ。
\end{eqnarray}

2022神戸大学理系過去問
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜軌跡(2)アポロニウスの円、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 2点$A(2,3),B(6,1)$がある。次の条件を満たす点$P,Q$の軌跡を求めよ。
(1)$2$点$A,B$からの距離が等しい点$P$
(2)$2$点$A,B$からの距離の比が$1:3$である点$Q$
この動画を見る 

福田の数学〜筑波大学2023年理系第1問〜3次関数の接線と三角形の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#図形と方程式#微分法と積分法#点と直線#平均変化率・極限・導関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#筑波大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 曲線C:$y$=$x$-$x^3$上の点A(1, 0)における接線を$l$とし、Cと$l$の共有点のうちAとは異なる点をBとする。また、-2<$t$<1とし、C上の点P($t$, $t$-$t^3$)をとる。さらに、三角形ABPの面積を$S(t)$とする。
(1)点Bの座標を求めよ。
(2)$S(t)$を求めよ。
(3)$t$が-2<$t$<1の範囲を動くとき、$S(t)$の最大値を求めよ。

2023筑波大学理系過去問
この動画を見る 
PAGE TOP