#千葉大学2023#定積分#ますただ - 質問解決D.B.(データベース)

#千葉大学2023#定積分#ますただ

問題文全文(内容文):
以下の定積分を解け。
$\displaystyle \int_{0}^{\frac{\pi}{6}} \displaystyle \frac{1}{\cos x} dx$

出典:2023年千葉大学
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#千葉大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
以下の定積分を解け。
$\displaystyle \int_{0}^{\frac{\pi}{6}} \displaystyle \frac{1}{\cos x} dx$

出典:2023年千葉大学
投稿日:2024.08.04

<関連動画>

【短時間でポイントチェック!!】定積分の基礎〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$\int_{-1}^2(x^2-6x+1)dx$
この動画を見る 

#高専数学#不定積分_13#元高専教員

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{dx}{\sqrt{ x+1 }-\sqrt{ x }}$

出典:高専数学 問題集
この動画を見る 

積分の基本 工夫しようか

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#法政大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
【法政大 過去問】

$f(x)=x^3-2x^2+2x-|2x^2-2x|$
とx軸とで囲まれた面積を求めよ.
この動画を見る 

福田の数学〜慶應義塾大学2022年総合政策学部第3問〜定積分で表された関数の最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ 実数k \gt 0 に対して、関数A(k)=\int_0^2|x^2-kx|dx\ とすると\\
A(k)=
\left\{\begin{array}{1}
\frac{\boxed{\ \ アイ\ \ }\ k^3+\ \boxed{\ \ ウエ\ \ }\ k^2+\ \boxed{\ \ オカ\ \ }\ k+\ \boxed{\ \ キク\ \ }}{\boxed{\ \ ケコ\ \ }}\hspace{25pt}(0 \lt k \lt \boxed{\ \ サシ\ \ })\\
\\
\frac{\boxed{\ \ スセ\ \ }\ k+\ \boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }}\hspace{103pt}(\boxed{\ \ サシ\ \ } \leqq k)\\
\end{array}
\right.\\
\\となる。この関数A(k)が最小となるのはk=\sqrt{\boxed{\ \ テト\ \ }}\ のときで、そのときの\\
\\
A(k)の値は\frac{\boxed{\ \ ナニ\ \ }+\boxed{\ \ ヌネ\ \ }\sqrt{\boxed{\ \ ノハ\ \ }}}{\boxed{\ \ ヒフ\ \ }}
\end{eqnarray}

2022慶應義塾大学総合政策学部過去問
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試12AB第2問〜定積分で表された関数と面積の2等分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}} \ xの関数f(x)をf(x)=x^3とする。\hspace{190pt}\\
(1)xの関数g(x)をg(x)=x^3-2x^2-x+3とする。曲線y=f(x)とy=g(x)は\\
3個の交点をもつ。それら交点を\ x \ 座標が小さい順にA,B,Cとすると、\\
点A,B,Cの\ x\ 座標はそれぞれ-\boxed{\ \ ア\ \ },\ \boxed{\ \ イ\ \ },\ \boxed{\ \ ウ\ \ } である。\\
\\
曲線y=g(x)の接線の傾きが最小となるのは、接点の\ x\ 座標が\frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}\ のときで、\\
\\
その最小値は-\frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ\ \ }}\ である。\\
\\
また、点Bを通るy=g(x)の接線の傾きの最小値は-\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}\ である。\\
\\
\\
(2)\ x\ の関数h(x)が\\
\\
h(x)=-x^2+\frac{x}{6}\int_0^3h(t)dt+4\\
\\
を満たすとき、h(x)=-x^2+\boxed{\ \ コ\ \ }\ x+4\ \ である。\\
\\
曲線y=f(x)とy=h(x)の交点の中点は(\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }},\ \frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }})であり、\\
\\
y=f(x)とy=h(x)で囲まれる図形の面積は\\
原点を通る直線y=\boxed{\ \ コ\ \ }\ xで2等分される。
\end{eqnarray}

2022明治大学全統過去問
この動画を見る 
PAGE TOP