福田の数学〜神戸大学2022年理系第2問〜無限等比級数の図形への応用 - 質問解決D.B.(データベース)

福田の数学〜神戸大学2022年理系第2問〜無限等比級数の図形への応用

問題文全文(内容文):
mを3以上の自然数、$\theta=\frac{2\pi}{m}$, $C_1$を半径1の円とする。
円$C_1$に内接する(全ての頂点が$C_1$上にある)正m角形を$P_1$とし、
$P_1$に内接する($P_1$の全ての辺と接する)円を$C_2$とする。
同様に、nを自然数とするとき、円$C_n$に内接する正m角形を$P_n$とし、
$P_n$に内接する円を$C_{n+1}$とする。$C_n$の半径を$r_n,C_n$の内側
で$P_n$の外側の部分の面積を$s_n$とし、$f(m)=\sum_{n=1}^{\infty}s_n$とする。以下の問いに答えよ。
(1)$r_n,s_n$の値を$\theta,n$を用いて表せ。
(2)$f(m)$の値を$\theta$を用いて表せ。
(3)極限値$\lim_{m \to \infty}f(m)$を求めよ。
ただし必要があれば$\lim_{x \to 0}\frac{x-\sin x}{x^3}=\frac{1}{6}$を用いてよい。

2022神戸大学理系過去問
単元: #大学入試過去問(数学)#複素数平面#関数と極限#図形への応用#数列の極限#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
mを3以上の自然数、$\theta=\frac{2\pi}{m}$, $C_1$を半径1の円とする。
円$C_1$に内接する(全ての頂点が$C_1$上にある)正m角形を$P_1$とし、
$P_1$に内接する($P_1$の全ての辺と接する)円を$C_2$とする。
同様に、nを自然数とするとき、円$C_n$に内接する正m角形を$P_n$とし、
$P_n$に内接する円を$C_{n+1}$とする。$C_n$の半径を$r_n,C_n$の内側
で$P_n$の外側の部分の面積を$s_n$とし、$f(m)=\sum_{n=1}^{\infty}s_n$とする。以下の問いに答えよ。
(1)$r_n,s_n$の値を$\theta,n$を用いて表せ。
(2)$f(m)$の値を$\theta$を用いて表せ。
(3)極限値$\lim_{m \to \infty}f(m)$を求めよ。
ただし必要があれば$\lim_{x \to 0}\frac{x-\sin x}{x^3}=\frac{1}{6}$を用いてよい。

2022神戸大学理系過去問
投稿日:2022.04.26

<関連動画>

【演習編!】演習で無限等比級数の知識をどう使う?!【数学III】

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 3rd School
問題文全文(内容文):
(1)$\displaystyle \sum_{n=1}^\infty \frac{1}{2}(\frac{5}{4})^{n-1}$
(2)$\displaystyle \sum_{n=1}^\infty \frac{4^n-3^{n+1}}{3^{2n}}$
この動画を見る 

福田のわかった数学〜高校3年生理系020〜極限(20)関数の極限、無理関数の極限(5)

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 無理関数の極限(5)

$\displaystyle\lim_{x \to \infty}(\sqrt{x^2+2x+3}-(ax+b))$
を求めよ。
この動画を見る 

福田の数学〜九州大学2024年理系第5問〜定積分で定義された数列の極限

アイキャッチ画像
単元: #関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 自然数$m$, $n$に対して
$I(m,n)$=$\displaystyle\int_1^ex^me^x(\log x)^ndx$
とする。以下の問いに答えよ。
(1)$I(m+1,n+1)$を$I(m,n+1)$, $I(m,n)$, $m$, $n$を用いて表せ。
(2)すべての自然数$m$に対して、$\displaystyle\lim_{n \to \infty}I(m,n)$=0 が成り立つことを示せ。
この動画を見る 

練習問題48 岡山大学2011 面積、極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#数列の極限#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#岡山大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$n \in IN,\ 0 \leqq x \leqq 1$
曲線$y=x^2(1-x)^n$と$x$軸で囲まれた図形の面積を$S_n$とする。
$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n\ S_k$を求めよ。

出典:2011年岡山大学 練習問題
この動画を見る 

京都大 合成関数 不等式

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a \geqq 2,f(x)=(x+a)(x+2)$
$f(f(x)) \gt 0$がすべての実数$x$に対して成り立つような$a$の範囲を求めよ

出典:2013年京都大学 過去問
この動画を見る 
PAGE TOP