福田の数学〜無限級数の和は部分和の極限〜明治大学2023年全学部統一Ⅲ第1問(1)〜無限級数の和 - 質問解決D.B.(データベース)

福田の数学〜無限級数の和は部分和の極限〜明治大学2023年全学部統一Ⅲ第1問(1)〜無限級数の和

問題文全文(内容文):
無限級数

$\displaystyle \sum_{n=1}^{\infty} \log \frac{(n+1)(n+2)}{n(n+3)}$

の和を求めよ。

2023明治大学過去問
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
無限級数

$\displaystyle \sum_{n=1}^{\infty} \log \frac{(n+1)(n+2)}{n(n+3)}$

の和を求めよ。

2023明治大学過去問
投稿日:2023.11.06

<関連動画>

【数学】数学的に全人類ハゲなんじゃね?~定義の大切さ~

アイキャッチ画像
単元: #数列#数学的帰納法#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
数学的帰納法についての説明動画です
この動画を見る 

確率 漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
サイコロを$n$回振って,出た目の積を5で割った余りが1である確率$p_n$を求めよ.
この動画を見る 

静岡大 漸化式 数列の最大値

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#静岡大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=\displaystyle \frac{19}{3}$
$a_{n+1}=2a_n-n・2^{n+1}+\displaystyle \frac{13}{3}・2^n$
$a_n$が最大となる$n$と$a_n$の最大値を求めよ

出典:2016年静岡大学 過去問
この動画を見る 

福田のおもしろ数学279〜関数方程式から関数の値を計算する問題

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
任意の実数$x$に対して$f(x)+f(x-1)=x^2$が成り立ち、$f(19)=94$のとき$f(94)$の値は?
この動画を見る 

福田の数学〜早稲田大学2025社会科学部第2問〜階差数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

数列$\{a_n\}$の階差数列を$\{b_n\}$、すなわち

$b_n=a_{n+1}-a_n \quad (n=1,2,3,\cdots)$

とする。次の問いに答えよ。

(1)$a_n=-\dfrac{1}{n}$のとき、

$b_n$を$n$の式で表す。

(2)$b_n=\dfrac{1}{n(n+1)}$のとき、

$a_n$を$n$の式で表せ。ただし、$a_1=1$とする。

(3)数列$\{b_n\}$が以下を満たすとき、

$a_n$を$n$の式で表せ。ただし、$a_1=1$とする。

$\begin{eqnarray}
\left\{
\begin{array}{l}
b_1=1 \\
b_n=n(n+1) \quad (n\geqq 2)
\end{array}
\right.
\end{eqnarray}$

$2025$念早稲田大学社会科学部過去問題
この動画を見る 
PAGE TOP