福田の数学〜上智大学2023年TEAP利用型文系第3問〜条件付き確率 - 質問解決D.B.(データベース)

福田の数学〜上智大学2023年TEAP利用型文系第3問〜条件付き確率

問題文全文(内容文):
$\Large\boxed{3}$ ある病原菌にはA型、B型の2つの型がある。A型とB型に同時に感染することはない。その病原菌に対して、感染しているかどうかを調べる検査Yがある。
検査結果は陽性か陰性のいずれかで、陽性であったときに病原菌の型までは判別できないものとする。検査Yで、A型の病原菌に感染しているのに陰性と判定される確率が10 %であり、B型の病原菌に感染しているのに陰性と判定される確率が20 %である。また、この病原菌に感染していないのに陽性と判定される確率が10 %である。
全体の1 %がA型に感染しており全体の4 %がB型に感染している集団から1人を選び検査Yを実施する。
(1)検査Yで陽性と判定される確率は$\frac{\boxed{\ \ ネ\ \ }}{\boxed{\ \ ノ\ \ }}$である。
(2)検査Yで陽性だった時に、A型に感染している確率は$\frac{\boxed{\ \ ハ\ \ }}{\boxed{\ \ ヒ\ \ }}$でありB型に感染している確率は$\frac{\boxed{\ \ フ\ \ }}{\boxed{\ \ ヘ\ \ }}$である。
(3)1回目の検査Yに加えて、その直後に同じ検査Yをもう一度行う。ただし、1回目と2回目の検査結果は互いに独立であるとする。2回の検査結果が共に陽性であったときに、A型に感染している確率は$\frac{\boxed{\ \ ホ\ \ }}{\boxed{\ \ マ\ \ }}$でありB型に感染している確率は$\frac{\boxed{\ \ ミ\ \ }}{\boxed{\ \ ム\ \ }}$である。
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ ある病原菌にはA型、B型の2つの型がある。A型とB型に同時に感染することはない。その病原菌に対して、感染しているかどうかを調べる検査Yがある。
検査結果は陽性か陰性のいずれかで、陽性であったときに病原菌の型までは判別できないものとする。検査Yで、A型の病原菌に感染しているのに陰性と判定される確率が10 %であり、B型の病原菌に感染しているのに陰性と判定される確率が20 %である。また、この病原菌に感染していないのに陽性と判定される確率が10 %である。
全体の1 %がA型に感染しており全体の4 %がB型に感染している集団から1人を選び検査Yを実施する。
(1)検査Yで陽性と判定される確率は$\frac{\boxed{\ \ ネ\ \ }}{\boxed{\ \ ノ\ \ }}$である。
(2)検査Yで陽性だった時に、A型に感染している確率は$\frac{\boxed{\ \ ハ\ \ }}{\boxed{\ \ ヒ\ \ }}$でありB型に感染している確率は$\frac{\boxed{\ \ フ\ \ }}{\boxed{\ \ ヘ\ \ }}$である。
(3)1回目の検査Yに加えて、その直後に同じ検査Yをもう一度行う。ただし、1回目と2回目の検査結果は互いに独立であるとする。2回の検査結果が共に陽性であったときに、A型に感染している確率は$\frac{\boxed{\ \ ホ\ \ }}{\boxed{\ \ マ\ \ }}$でありB型に感染している確率は$\frac{\boxed{\ \ ミ\ \ }}{\boxed{\ \ ム\ \ }}$である。
投稿日:2023.09.09

<関連動画>

福田の数学〜名古屋大学2022年理系第2問〜互いに素になるような確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 1つのサイコロを3回投げる。1回目に出る目をa、2回目に出る目をb、\\
3回目に出る目をcとする。なおサイコロは1から6までの目が等しい確率で出るもの\\
とする。\\
(1)ab+2c \geqq abcとなる確率を求めよ。\\
(2)ab+2cと2abcが互いに素となる確率を求めよ。
\end{eqnarray}

2022名古屋大学理系過去問
この動画を見る 

【数学】確率 反復試行~「同時」「順番」の違いとは?

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学】確率 反復試行「同時」「順番」の違い解説動画です
-----------------
(1)3個のサイコロを同時に投げるとき、出る目の最小値が4である確実は?

(2)3個のサイコロを順番に投げるとき、出る目の最小値が4である確率は?
この動画を見る 

きょ、京大!?絶対に落としてはいけない2023年度の確率の問題【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$n$を自然数とする。一個のさいころを$n$回投げ、出た目を順に$X_{1},X_{2}……,X_{n}$とし、$n$個の数の積$X_{1},X_{2}……,X_{n}$を$Y$とする。

(1)$Y$が5で割り切れる確率を求めよ。

京都大過去問
この動画を見る 

【高校数学】集合の要素の個数~大切なのは公式ではなく理解~ 1-4【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
集合の要素の個数についての説明動画です
この動画を見る 

【高校数学】集合の要素の個数の例題2題~べん図便利すぎ~ 1-4.5【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1から200までの整数のうち、次の数は何個あるか。
(1)3の倍数
(2)7の倍数
(3)21の倍数
(4)3または7の倍数
(5)3の倍数でなく7の倍数である数
(6)3の倍数でも7の倍数でもない数

-----------------

全体集合$U$と、その2つの部分集合$A,B$に対して、$n(U)$=60,$n(A)$=30, $n(B)$=25である。
このとき次の集合の要素の個数を求めよ。
(1)$A \cup B$
(2)$A \cap B$
(3)$A \cap \overline{ B }$
この動画を見る 
PAGE TOP