【数C】【平面上の曲線】長さ8の線分ABの端点Aは軸上を、 端点Bはy軸上を動くとする。(1) 線分ABを5:3に内分する点Pの軌跡を求めよ。(2) 線分ABを5:3に外分する点Qの軌跡を求めよ。 - 質問解決D.B.(データベース)

【数C】【平面上の曲線】長さ8の線分ABの端点Aは軸上を、 端点Bはy軸上を動くとする。(1) 線分ABを5:3に内分する点Pの軌跡を求めよ。(2) 線分ABを5:3に外分する点Qの軌跡を求めよ。

問題文全文(内容文):
長さ $8$ の線分 $\mathrm{AB}$ の端点$\mathrm{A}$ は $x$ 軸上を、
端点$\mathrm{B}$ は $y$ 軸上を動くとする。

(1) 線分 $\mathrm{AB}$ を $5:3$ に内分する点 $\mathrm{P}$ の軌跡を求めよ。
(2) 線分 $\mathrm{AB}$ を $5:3$ に外分する点 $\mathrm{Q}$ の軌跡を求めよ。
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師: 理数個別チャンネル
問題文全文(内容文):
長さ $8$ の線分 $\mathrm{AB}$ の端点$\mathrm{A}$ は $x$ 軸上を、
端点$\mathrm{B}$ は $y$ 軸上を動くとする。

(1) 線分 $\mathrm{AB}$ を $5:3$ に内分する点 $\mathrm{P}$ の軌跡を求めよ。
(2) 線分 $\mathrm{AB}$ を $5:3$ に外分する点 $\mathrm{Q}$ の軌跡を求めよ。
投稿日:2025.05.27

<関連動画>

20年5月数検準1級1次試験(楕円)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#平面上の曲線#2次曲線#数学検定#数学検定準1級#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
6⃣
2点A(0,-3)、B(0,1)から距離の和が6である楕円の方程式を求めよ
この動画を見る 

【数C】【平面上の曲線】2次曲線3 ※問題文は概要欄

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師: 理数個別チャンネル
問題文全文(内容文):
放物線 $ C \mathrm{:} \ x^2 = 4y$ の焦点を $\mathrm{F}$、$C$ 上の点を $\mathrm{P}$ 、 $\mathrm{P}$ から準線に下した垂線を $\mathrm{PH}$ とする。 $\triangle \mathrm{PFH}$ が正三角形になるとき、 $\mathrm{P}$ の $x$ 座標 $a$ を求めよ。また、$ a \gt 0$ のとき、辺 $\mathrm{FH}$ と $C$ の交点 $\mathrm{Q}$ の $x$ 座標 $b$ と $\triangle \mathrm{PFQ}$ の面積 $S$ を求めよ。
この動画を見る 

【数C】【平面上の曲線】楕円x²/8+y²/4=1上の点(2,√2) を通り、この楕円の焦点を焦点とする双曲線の方程式を求めよ。また、双曲線の漸近線の方程式も求めよ。

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師: 理数個別チャンネル
問題文全文(内容文):
楕円 $\displaystyle \frac{x^2}{8}+\frac{y^2}{4}=1$ 上の点 $(2,\ \sqrt{2})$を通り、
この楕円の焦点を焦点とする双曲線の方程式を求めよ。
また、双曲線の漸近線の方程式も求めよ。
この動画を見る 

【高校数学】数Ⅲ-29 双曲線①

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
双曲線①に関して解説します.
この動画を見る 

【数Ⅲ】2次曲線:双曲線関数について(関数として知っておこう!知識編)

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
あまり学校で聞かない、双曲線関数の性質を教えます!(数学Ⅲにおける重要関数!)
この動画を見る 
PAGE TOP