福田の一夜漬け数学〜図形と方程式〜領域(7)直線の通過領域(実践編)、高校2年生 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜図形と方程式〜領域(7)直線の通過領域(実践編)、高校2年生

問題文全文(内容文):
${\Large\boxed{1}}$ $m$が$0 \leqq m \leqq 1$の範囲を動くとき、直線$\ell:y=mx-m^2$
の通過する領域を図示せよ。
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $m$が$0 \leqq m \leqq 1$の範囲を動くとき、直線$\ell:y=mx-m^2$
の通過する領域を図示せよ。
投稿日:2018.09.04

<関連動画>

成蹊大2021 3次方程式の解

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3+2x^2+3x+4=0$の3つの解を$\alpha,\beta,\delta$とする.
$\alpha^2+\beta^2,\beta^2+\delta^2,\delta^2+\alpha^2$を解にもつ3次方程式を求めよ.
2021成蹊過去問
この動画を見る 

e^πとπ^e どっちがでかい?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#微分法と積分法#指数関数#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$e^π$と$π^e$どっちがでかい?
この動画を見る 

ヨビノリたくみ入試解説 2020一橋極限

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\displaystyle \lim_{x\to\infty}(\cos^2\sqrt{x+1}+\sin^2\sqrt x)=1$

2020一橋大過去問
この動画を見る 

長崎大 積分

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=-x^4+8x^3-18x^2+11$と異なる2点で接する直線と$f(x)$で囲まれる面積を求めよ.

長崎大過去問
この動画を見る 

福田のおもしろ数学129〜三角関数の最大問題

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle\frac{1+\sin\theta}{2+\cos\theta}$($\theta$は実数)の最大値を求めよ。
この動画を見る 
PAGE TOP