成蹊大2021 3次方程式の解 - 質問解決D.B.(データベース)

成蹊大2021 3次方程式の解

問題文全文(内容文):
$x^3+2x^2+3x+4=0$の3つの解を$\alpha,\beta,\delta$とする.
$\alpha^2+\beta^2,\beta^2+\delta^2,\delta^2+\alpha^2$を解にもつ3次方程式を求めよ.
2021成蹊過去問
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3+2x^2+3x+4=0$の3つの解を$\alpha,\beta,\delta$とする.
$\alpha^2+\beta^2,\beta^2+\delta^2,\delta^2+\alpha^2$を解にもつ3次方程式を求めよ.
2021成蹊過去問
投稿日:2021.09.05

<関連動画>

福田の数学〜慶應義塾大学2021年看護医療学部第1問(6)〜高次方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (6)\ a,bを実数、iを虚数単位とする。4次方程式\\
x^4+(a+2)x^3-(2a+2)x^2+(b+1)x+a^3=0\\
の1つの解が1+iであるとき、\\
a=\boxed{\ \ コ\ \ }, b=\boxed{\ \ サ\ \ }\\
である。また、他の解は\boxed{\ \ シ\ \ }である。
\end{eqnarray}
この動画を見る 

式の値

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2+\frac 1{x^2} = \sqrt2$
$x^{2024} + \frac 1{x^{2024}} = ?$
この動画を見る 

横浜市立大(医)3次方程式の虚数解の絶対値

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#複素数と方程式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3-x^2-x+k=0(k\gt 1)$である.

(1)実数解は1個であることを示せ.
(2)3つの解の絶対値はいずれも1より大きいことを示せ.

横浜市立(医)過去問
この動画を見る 

複素数と方程式 数Ⅱ 解と係数の利用【ホーン・フィールドがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
2次方程式$(x+1)(x-1)+(x-1)(x-2)+(x-2)(x+1)=0$
の2つの解をα、βとするとき、次の式の値を求めよ。
$\dfrac{1}{(α-2)(β-2)}+\dfrac{1}{(α-1)(β-1)}+\dfrac{1}{(α+1)(β+1)}$

解の公式を用いて、次の2次式を因数分解せよ。
(1) $x^2-xy-x+2y-2$
(2) $2x^2-5xy+2y^2+x+y-1$

次の連立方程式を解け。
(1) $x+y=3$
$x+y+xy=-7$
(2) $x^2+y^2=13$
$xy=6$
この動画を見る 

3次方程式 解と係数の関係

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3-3x^2+2x+1=0$の3つの解を$\alpha,\beta,\delta$とする.
$\alpha^3,\beta^3,\delta^3$を解にもつ3次方程式を求めよ.
この動画を見る 
PAGE TOP