【高校数学】数Ⅲ-82 三角関数と極限① - 質問解決D.B.(データベース)

【高校数学】数Ⅲ-82 三角関数と極限①

問題文全文(内容文):
次の極限を求めよ。

①$\displaystyle \lim_{x\to 0}\dfrac{\sin 3x}{x}$

②$\displaystyle \lim_{x\to 0}\dfrac{\tan 3x}{2x}$

③$\displaystyle \lim_{x\to 0}\dfrac{\tan 3x}{\sin 2x}$

④$\displaystyle \lim_{x\to 0}\dfrac{\sin x-\sin 5x}{2x}$

⑤$\displaystyle \lim_{x\to 0}\dfrac{1-\cos 2x}{x^2}$

⑥$\displaystyle \lim_{x\to 0}\dfrac{x\sin x}{1-\cos x}$
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の極限を求めよ。

①$\displaystyle \lim_{x\to 0}\dfrac{\sin 3x}{x}$

②$\displaystyle \lim_{x\to 0}\dfrac{\tan 3x}{2x}$

③$\displaystyle \lim_{x\to 0}\dfrac{\tan 3x}{\sin 2x}$

④$\displaystyle \lim_{x\to 0}\dfrac{\sin x-\sin 5x}{2x}$

⑤$\displaystyle \lim_{x\to 0}\dfrac{1-\cos 2x}{x^2}$

⑥$\displaystyle \lim_{x\to 0}\dfrac{x\sin x}{1-\cos x}$
投稿日:2018.03.27

<関連動画>

練習問題5(数検準1級 教員採用試験 極限値)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#平均変化率・極限・導関数#その他#数学検定#数学検定準1級#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{x\to\infty} \dfrac{\tan^3x-\sin^3x}{x^5}$
これを解け.
この動画を見る 

福田の数学〜慶應義塾大学2024年看護医療学部第1問(3)〜対数不等式

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)不等式$(\log_4x)^2$-$\log_8x^2$+$\frac{1}{3}$<0 を解くと$\boxed{\ \ エ\ \ }$である。
この動画を見る 

福田の数学〜立教大学2022年経済学部第1問(3)〜整式の割り算と余り

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
aを定数とする。
3次式 $F(x)=x^3-6x+a$を2次式$G(x)=x^2 -3x+2$で割った余りを$R(x)$ とする。
G(x)がR(x)で割り切れるようなaの値をすべて求めよ。

2022立教大学経済学部過去問
この動画を見る 

【高校数学】特性方程式の漸化式~分かりやすく丁寧に~3-18【数学B】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数列#漸化式#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
特性方程式の漸化式
分かりやすく丁寧に解説していきます。
この動画を見る 

福田の数学〜東京理科大学2022年理工学部第1問(1)〜解と係数の関係と3次関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#解と判別式・解と係数の関係#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(1)mを実数とする。xについての2次方程式$x^2-(m+3)x+m^2-9=0$の
二つの解を$α,β$とする。$α,β$が実数であるための必要十分条件は$- \boxed{ア} \leqq m \leqq \boxed{イ}$である。
mが$- \boxed{ア} \leqq m \leqq \boxed{イ}$の範囲を動くときの
$α^3+β^3$の最小値は$\boxed{ウ}$、最大値は$\boxed{エオカ}$である。
この動画を見る 
PAGE TOP