福田の数学〜浜松医科大学2022年医学部第2問〜3次関数が区間で常に正である条件 - 質問解決D.B.(データベース)

福田の数学〜浜松医科大学2022年医学部第2問〜3次関数が区間で常に正である条件

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ sを実数、tを0以上の実数とし、関数f(x)を\\
f(x)=x^3-sx^2+(t-2s^2)\ x+st\\
により定める。関数f(x)に対して次の条件pを考える。\\
p:0 \leqq x \leqq 1を満たすすべてのxに対してf(x) \gt 0である。\\
このとき、条件pを満たす点(s,t)の領域を図示せよ。
\end{eqnarray}

2022浜松医科大学医学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ sを実数、tを0以上の実数とし、関数f(x)を\\
f(x)=x^3-sx^2+(t-2s^2)\ x+st\\
により定める。関数f(x)に対して次の条件pを考える。\\
p:0 \leqq x \leqq 1を満たすすべてのxに対してf(x) \gt 0である。\\
このとき、条件pを満たす点(s,t)の領域を図示せよ。
\end{eqnarray}

2022浜松医科大学医学部過去問
投稿日:2022.06.01

<関連動画>

東京理科大 指数方程式 実数解の条件 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#2次関数#式と証明#2次方程式と2次不等式#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'07東京理科大学過去問題
$9^x+9^{-x}-(a+1)(3^x+3^{-x})-2a^2+8a-4$
$=0$
(1)$a=-5$のとき、解け
(2)実数解をもつaの範囲
この動画を見る 

すっきりするただの計算問題

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x=\sqrt2+1$のとき,
$\dfrac{x^7-x}{x^8+1}$の値を求めよ.
この動画を見る 

これ説明して

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
XのX乗…これが続いた時の計算方法紹介動画です
この動画を見る 

指数方程式の解の配置 弘前大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$4^x-2^{x+1}a+8a-15=0$の解が次の条件を満たす$a$の範囲を求めよ.
(1)ただ1つの実数解をもつとき
(2)相異なる2つの実数解がともに1以上のとき

弘前大過去問
この動画を見る 

福田の数学〜慶應義塾大学2023年薬学部第1問(6)〜指数方程式が解をもたない条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (6)aを実数とする。実数xの関数f(x)=$4^x$+$4^{-x}$+a($2^x$+$2^{-x}$)+$\frac{1}{3}a^2$-1 がある。
(i)t=$2^x$+$2^{-x}$とおくときtの最小値は$\boxed{\ \ ソ\ \ }$であり、f(x)をtの式で表すと$\boxed{\ \ タ\ \ }$である。
(ii)a=-3のとき、方程式f(x)=0の解をすべて求めると、x=$\boxed{\ \ チ\ \ }$である。
(iii)方程式f(x)=0が実数解を持たないようなaの値の範囲は$\boxed{\ \ ツ\ \ }$である。
この動画を見る 
PAGE TOP