福田の一夜漬け数学〜数列・群数列(3)〜高校2年生 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜数列・群数列(3)〜高校2年生

問題文全文(内容文):
\begin{array}{|c|c|c|c|c}
\hline 1 & 2 & 5 & 10 & \\
\hline 4 & 3 &6 & 11 & \\
\hline 9 & 8 & 7 & 12 & \\
\hline 16 & 15 & 14 & 13 & \\
\hline \\
\end{array}

上図のように自然数を配置していく。
$m$行目、$n$列目にある数を$a(m,n)$と
表すことにする。
例えば、$a(3,2)=8$ である。
次の問いに答えよ。

(1)$a(1,n)$
(2)$a(m,m)$
(3)$a(m,n)$
(4)150は何行目の何列目に出てくるか。
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{array}{|c|c|c|c|c}
\hline 1 & 2 & 5 & 10 & \\
\hline 4 & 3 &6 & 11 & \\
\hline 9 & 8 & 7 & 12 & \\
\hline 16 & 15 & 14 & 13 & \\
\hline \\
\end{array}

上図のように自然数を配置していく。
$m$行目、$n$列目にある数を$a(m,n)$と
表すことにする。
例えば、$a(3,2)=8$ である。
次の問いに答えよ。

(1)$a(1,n)$
(2)$a(m,m)$
(3)$a(m,n)$
(4)150は何行目の何列目に出てくるか。
投稿日:2018.05.03

<関連動画>

福田の数学〜立教大学2021年理学部第1問(4)〜数列の和と不等式の評価

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (4)一般項が$a_n=\frac{2}{n(n+2)}$であるような数列$\left\{a_n\right\}$の初項から第n項までの和
を$S_n$とする。$S_n \gt \frac{7}{6}$を満たす最小の自然数$n$は$\boxed{\ \ オ\ \ }$である。

2021立教大学理学部過去問
この動画を見る 

大学入試問題#77 京都大学(2002) 数列と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a_1=1,\displaystyle \lim_{ n \to \infty }S_n=1$
$n(n-2)a_{n+1}=s_n$のとき
一般項$a_n$を求めよ。

出典:2002年京都大学 入試問題
この動画を見る 

福田の数学〜早稲田大学2025社会科学部第2問〜階差数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

数列$\{a_n\}$の階差数列を$\{b_n\}$、すなわち

$b_n=a_{n+1}-a_n \quad (n=1,2,3,\cdots)$

とする。次の問いに答えよ。

(1)$a_n=-\dfrac{1}{n}$のとき、

$b_n$を$n$の式で表す。

(2)$b_n=\dfrac{1}{n(n+1)}$のとき、

$a_n$を$n$の式で表せ。ただし、$a_1=1$とする。

(3)数列$\{b_n\}$が以下を満たすとき、

$a_n$を$n$の式で表せ。ただし、$a_1=1$とする。

$\begin{eqnarray}
\left\{
\begin{array}{l}
b_1=1 \\
b_n=n(n+1) \quad (n\geqq 2)
\end{array}
\right.
\end{eqnarray}$

$2025$念早稲田大学社会科学部過去問題
この動画を見る 

例の“あれ”を使うだけの問題

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ f(n)=\dfrac{1}{2^n}+\dfrac{1}{3^n}+\dfrac{1}{4^n}+…+\dfrac{1}{2022^n}$
$ \displaystyle \sum_{n=2}^{\infty}f(n)=?$これを解け.
この動画を見る 

二項定理を使ってあることに気付ける?【2017年一橋大学】

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#式の計算(整式・展開・因数分解)#恒等式・等式・不等式の証明#数列#漸化式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数B
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ P(0)=1,P(x+1)-P(x)=2x$を満たす整式$P(x)$を求めよ。

2017一橋大過去問
この動画を見る 
PAGE TOP