【数Ⅱ】【微分法と積分法】放物線と直線で囲まれた図形の面積 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【微分法と積分法】放物線と直線で囲まれた図形の面積 ※問題文は概要欄

問題文全文(内容文):
次の曲線と直線で囲まれた図形の面積Sを求めよ。
(1) y=x24x2,x
(2) y=x2+x,y=1x
(3) y=|x2x2|,y=x+1
チャプター:

0:00 オープニング
0:05 (1)解説
2:08 (2)解説
3:25 (3)解説
7:34 (3)別解
8:59 エンディング

単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の曲線と直線で囲まれた図形の面積Sを求めよ。
(1) y=x24x2,x
(2) y=x2+x,y=1x
(3) y=|x2x2|,y=x+1
投稿日:2025.03.14

<関連動画>

【数Ⅱ】積分で面積が求まる理由【面積を表すことが先、積分が後。区分求積法で積分を使わず面積を計算しよう】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
積分で面積が求まる理由に関して解説していきます.
この動画を見る 

福田の数学〜慶應義塾大学2021年総合政策学部第4問〜円と放物線が接するときの囲まれた面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
4a
aを正の実数、bを1より大きい実数としたとき、放物線y=ax2+bが、
下図(※動画参照)のように原点を中心とした半径1の円x2+y2=1と2箇所で
接している。(すなわち共有点において共通の接線を持つ)

(1)一般に、b=    a2+    a+        a+    である。

(2)特に、a=22とすると、放物線と円の接点は
(±        ,         )
であり、円と放物線に囲まれた上図の斜線部の面積は
    +    π    となる。

2021慶應義塾大学総合政策学部過去問
この動画を見る 

数学「大学入試良問集」【12−6 放物線と接線で囲まれた面積】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#東京都立大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
y=x2のグラフをrとする。
b<a2をみたす点P(a,b)からrへ接線を2本引き、接点をA,Bとする。
rと2本の線分PA,PBで囲まれた図形の面積が23になるような点Pの軌跡を求めよ。
この動画を見る 

【高校数学】数Ⅱ:微分法と積分法:定積分と面積:1/6公式を用いて面積を求める!【NI・SHI・NOがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
教材: #PRIME数学#PRIME数学Ⅱ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の曲線または直線で囲まれた図形の面積を求めよ。
yx23xy2x
この動画を見る 

福田の数学〜絶対落としたくないこの一題!〜慶應義塾大学2023年経済学部第6問〜定積分と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
a,bを実数の定数とする。また、xの関数f(x)=x3ax+b
a=11{32b|x2+x|f(x)}dxを満たすとする。
(1)bを、aを用いて表せ。
(2)y=f(x)で定まる曲線Cとx軸で囲まれた図形の面積Sを求めよ。なお、必要があればα<βを満たす実数α,βに対して成り立つ公式
a=αβ(xα)2(xβ)dx=112(βα)4
を用いてもよい。

2023慶應義塾大学商学部過去問
この動画を見る 
PAGE TOP preload imagepreload image