【数検2級】数学検定2級2次:問題7 - 質問解決D.B.(データベース)

【数検2級】数学検定2級2次:問題7

問題文全文(内容文):
$y=x^3-2x$ で表されるxy平面上の曲線をCとします。このとき、次の問いに答えなさい。
(1) C上の点($t,t^3-2t$)における接線の方程式をtを用いて表しなさい。
(2) 点(0,-2)からCへ引いた接線の方程式を求めなさい。
チャプター:

0:00 問題7について
0:47 (1)の解説
4:05 (2)の解説
5:46 まとめ

単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#接線と増減表・最大値・最小値#数学検定#数学検定2級#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$y=x^3-2x$ で表されるxy平面上の曲線をCとします。このとき、次の問いに答えなさい。
(1) C上の点($t,t^3-2t$)における接線の方程式をtを用いて表しなさい。
(2) 点(0,-2)からCへ引いた接線の方程式を求めなさい。
投稿日:2022.12.04

<関連動画>

i=1⁉️からくりは通常動画で❗️  #short

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
iの計算式に関して解説していきます。
この動画を見る 

早稲田(商) 小問の難問

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数である.
$n\leqq (5+2\sqrt5)^{2019}\lt n+1$,$n$を$100$で割った余りを求めよ.

2019早稲田(商)過去問
この動画を見る 

福田の数学〜北海道大学2025理系第1問〜指数対数の基本性質と数列

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

$\alpha,r$を$\alpha \gt 1,r \gt 1$を満たす実数とする。

数列$\{a_n\}$を$a_1=\alpha$で公比が$r$の等比数列とする。

数列$\{b_n\}$を

$b_n=\log_{a_{n}} (a_{n+1}) (n=1,2,3,\cdots)$で定める。

(1)$b_n$を$n$と$\log_{\alpha}r$を用いて表せ。

$2025$年北海道大学理系過去問題
この動画を見る 

福田のわかった数学〜高校3年生理系030〜極限(30)関数の極限、三角関数の極限(10)

アイキャッチ画像
単元: #数Ⅱ#三角関数#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 三角関数の極限(10)

$\displaystyle \lim_{x \to 0}\frac{\sqrt{9-8x+7\cos2x}-(a+bx)}{x^2}$
が有限の値となる$a,b$とそのときの極限値
この動画を見る 

#福岡大学#不定積分#ますただ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#福岡大学
指導講師: ますただ
問題文全文(内容文):
以下の不定積分を解け
$\displaystyle \int \displaystyle \frac{x}{\sqrt{ 2x+1 }}$ $dx$

出典:福岡大学
この動画を見る 
PAGE TOP