福田の数学〜上智大学2021年TEAP利用理系第4問〜楕円と弦の中点の軌跡 - 質問解決D.B.(データベース)

福田の数学〜上智大学2021年TEAP利用理系第4問〜楕円と弦の中点の軌跡

問題文全文(内容文):
${\Large\boxed{4}}$Oを原点とする座標平面において、楕円$D:\frac{x^2}{6}+\frac{y^2}{2}=1$ 上に異なる2点$P_1,P_2$
がある。$P_1$における接線$l_1$と$P_2$における接線$l_2$の交点を$Q(a,\ b)$とし、線分$P_1P_2$の
中点をRとする。

(1)$P_1$の座標を$(x_1,\ y_1)$とするとき、$l_1$の方程式は$x_1x+\boxed{\ \ チ\ \ }\ y_1y+\boxed{\ \ ツ\ \ }=0$
と表される。

(2)直線$P_1P_2$の方程式は、a,bを用いて$ax+\boxed{\ \ テ\ \ }\ by+\boxed{\ \ ト\ \ }=0$と表される。

(3)3点O,R,Qは一直線上にあって$\overrightarrow{ OR }=\frac{\boxed{\ \ ナ\ \ }}{a^2+\boxed{\ \ ニ\ \ }\ b^2}\overrightarrow{ OQ }$が成り立つ。

(4)$l_1$と$l_2$のどちらもy軸と平行ではないとする。このとき、$l_1$と$l_2$の傾きは
tの方程式$(a^2+\boxed{\ \ ヌ\ \ })t^2+\boxed{\ \ ネ\ \ }abt+(b^2+\boxed{\ \ ノ\ \ })=0$ の解である。

(5)$l_1$と$l_2$が直交しながら$P_1,P_2$が動くとする。
$(\textrm{i})Q$の軌跡の方程式を求めよ。   $(\textrm{ii})R$のy座標の最大値を求めよ。
$(\textrm{iii})R$の軌跡の概形を描け。

2021上智大学理系過去問
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#軌跡と領域#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$Oを原点とする座標平面において、楕円$D:\frac{x^2}{6}+\frac{y^2}{2}=1$ 上に異なる2点$P_1,P_2$
がある。$P_1$における接線$l_1$と$P_2$における接線$l_2$の交点を$Q(a,\ b)$とし、線分$P_1P_2$の
中点をRとする。

(1)$P_1$の座標を$(x_1,\ y_1)$とするとき、$l_1$の方程式は$x_1x+\boxed{\ \ チ\ \ }\ y_1y+\boxed{\ \ ツ\ \ }=0$
と表される。

(2)直線$P_1P_2$の方程式は、a,bを用いて$ax+\boxed{\ \ テ\ \ }\ by+\boxed{\ \ ト\ \ }=0$と表される。

(3)3点O,R,Qは一直線上にあって$\overrightarrow{ OR }=\frac{\boxed{\ \ ナ\ \ }}{a^2+\boxed{\ \ ニ\ \ }\ b^2}\overrightarrow{ OQ }$が成り立つ。

(4)$l_1$と$l_2$のどちらもy軸と平行ではないとする。このとき、$l_1$と$l_2$の傾きは
tの方程式$(a^2+\boxed{\ \ ヌ\ \ })t^2+\boxed{\ \ ネ\ \ }abt+(b^2+\boxed{\ \ ノ\ \ })=0$ の解である。

(5)$l_1$と$l_2$が直交しながら$P_1,P_2$が動くとする。
$(\textrm{i})Q$の軌跡の方程式を求めよ。   $(\textrm{ii})R$のy座標の最大値を求めよ。
$(\textrm{iii})R$の軌跡の概形を描け。

2021上智大学理系過去問
投稿日:2021.09.09

<関連動画>

高専数学 微積I #226(2) 媒介変数表示の面積

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$0\leqq t\leqq \dfrac{\pi}{4}$とする.
曲線$x=\tan t,y=\sin t+1$と
$x$軸,$y$軸,直線$x=1$で囲まれた図形の
面積$S$を求めよ.
この動画を見る 

福田の1.5倍速演習〜合格する重要問題020〜東京工業大学2016年度理系数学第5問〜媒介変数で表された曲線の追跡と面積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#東京工業大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
次のように媒介変数表示されたxy平面上の曲線をCとする。
$\left\{\begin{array}{1}
x=3\cos t-\cos3t
y=3\sin t-\sin3t
\end{array}\right.$
ただし、$0 \leqq t \leqq \frac{\pi}{2}$である。
(1)$\frac{dx}{dt}$および$\frac{dy}{dt}$を計算し、Cの概形を図示せよ。
(2)Cとx軸とy軸で囲まれた部分の面積を求めよ。

2016東京工業大学理系過去問
この動画を見る 

福田の数学〜明治大学2024全学部統一III第3問〜外サイクロイド曲線と曲線の長さ

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3} a\gt 0$とする。座標平面で、原点$O$を中心とする半径$a$の定円を$C_1$とし、$C_1$と外接する半径$a$の円を$C_2$とする。円$C_2$が定円$C_1$と外接しながらすべることなく転がるとき、$C_2$上の定点$P$が描く曲線を考えたい。始めに$C_2$の中心が$(2a,0)$にあり、$P$が$(a,0)$にあるとする。$C_2$の中心が点$(2a,0)$から原点$O$を中心に反時計回りに$θ$だけ回転した位置にきたとき、$C_1$と$C_2$の接点を通る$C_1$と$C_2$の共通の接線を$l_θ$とする。$l_θ$の方程式は$a=(\boxed{ア})x+(\boxed{イ})y$である。このとき、$P$は直線$l_θ$に関して$(a,0)$と対称な点であるので、$P$の座標を$(x,y)$とすると、$P$の軌跡は$θ$を媒介変数として$x=2a(\boxed{ウ})cosθ+a, y=2a(\boxed{ウ})sinθ$と表される。
$x$と$y$をそれぞれ$θ$で微分すると$\frac{dx}{dθ}=2a(\boxed{エ}),\frac{dy}{dθ}=2a(\boxed{オ})$となるので、$θ$が0から2まで動くとき、$P$が描く曲線の長さは$\boxed{カキ}a$である。
この動画を見る 

福田の数学〜九州大学2022年理系第5問の背景を考える〜内サイクロイド曲線(ハイポサイクロイド、アステロイド)の媒介変数表示

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上の曲線#ベクトルと平面図形、ベクトル方程式#微分とその応用#微分法#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学(高校生)#九州大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
xy平面上の曲線Cを、媒介変数tを用いて次のように定める。
$x=5\cos t+\cos5t, y=5\sin t-\sin5t (-\pi \leqq t \lt \pi)$
以下の問いに答えよ。
(1)区間$0 \lt t \lt \frac{\pi}{6}$において、$\frac{dx}{dt} \lt 0, \frac{dy}{dx} \lt 0$であることを示せ。
(2)曲線Cの$0 \leqq t \leqq \frac{\pi}{6}$の部分、x軸、直線$y=\frac{1}{\sqrt3}x$で囲まれた
図形の面積を求めよ。
(3)曲線Cはx軸に関して対称であることを示せ。また、C上の点を
原点を中心として反時計回りに$\frac{\pi}{3}$だけ回転させた点はC上
にあることを示せ。
(4)曲線Cの概形を図示せよ。

2022九州大学理系過去問
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年医学部第3問〜内サイクロイドと極方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)座標平面上の点P(x,y)を、点T(s,t)を中心として半時計周りに角$\alpha$だけ
回転させるときに、点Pが点P'(x',y')に移るとする。x'とy'を$x,y,s,t,\alpha$
の式で表すと$x'=\boxed{\ \ ア\ \ }, y'=\boxed{\ \ イ\ \ }$となる。
(2)aを正の実数とする。原点O(0,0)とする半径aの円Cに、半径$\frac{a}{2}$で原点O
を通る円Kを点A(a,0)において内接させる。この円Kを円Cに沿って
滑らないように転がす。ただし、KとCの接点がC上を半時計回りに動くようにする。
そして、接点の座標がはじめて$(a\cos\beta,a\sin\beta)(0 \leqq \beta \leqq 2\pi)$となるようにする。
円Kに対するこの操作は次の2段階の操作を続けて行うことと同等である。
$(\textrm{i})$点B$(\frac{a}{2},0)$を中心として、円Kを$\boxed{\ \ ウ\ \ }$に角$\boxed{\ \ エ\ \ }$だけ回転させる。
$(\textrm{ii})$原点Oを中心として、円Kを$\boxed{\ \ オ\ \ }$に角$\boxed{\ \ カ\ \ }$だけ回転させる。

$\boxed{\ \ ウ\ \ },\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ },\boxed{\ \ カ\ \ }$の選択肢
時計回り,反時計回り,$\beta,2\beta,\frac{1}{2}\beta$

(3)円Kが点Aにおいて円Cに内接しているとき、Kの内部に固定された点Q(b,0)
(ただし、$0 \lt b \lt a$)をとる。円Kを、Cとの接点がC上を一周するまで(2)に述べた
やり方でCに沿って転がすとき、点Qが動いてできる曲線を$S_1$とする。$S_1$上の
点の座標を(x,y)として、$S_1$の方程式をx,yを用いて書くと$\boxed{\ \ キ\ \ }$となる。

(4)円Kが点Aにおいて円Cに内接しているとき、円Cに固定された点R(0,a)をとる。
今度は円Kを固定して、円Cの方をKに接した状態で滑らないようにKに沿って転がす。
2つの円の接点が円Kを$\boxed{\ \ ク\ \ }$回転したとき、点Rははじめてもとの位置
(0,a)に戻る。Rが描く曲線を$S_2$とする。原点Oを極とし、x軸の正の部分を
始線とする極座標#$(r,\theta)$による$S_2$の極方程式は$r=\boxed{\ \ ケ\ \ }$である。
ただし$r,\theta$はそれぞれ$S_2$上の点の原点からの距離、および偏角である。

2022慶應義塾大学医学部過去問
この動画を見る 
PAGE TOP