【高校数学】 数Ⅱ-37 解と係数の関係④ - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-37 解と係数の関係④

問題文全文(内容文):
◎次の2数を解とする2次方程式を1つ作ろう。ただし、係数は整数とする。

①$6.-3$

②$2+3i,2-3i$

◎和と積が次のようになる2数を求めよう。

③和が-5,積が3

④和が2,積が4
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の2数を解とする2次方程式を1つ作ろう。ただし、係数は整数とする。

①$6.-3$

②$2+3i,2-3i$

◎和と積が次のようになる2数を求めよう。

③和が-5,積が3

④和が2,積が4
投稿日:2015.05.25

<関連動画>

4次方程式の解と係数の関係 答えがあっていればなんでもいいか!山口大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#数学(高校生)#山口大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$
\begin{eqnarray}
&&2023山口大\\
&&x^4-6x^2+25=0の4つの解をp,q,r,s\\
&&①p^3+q^3+r^3+s^3\\
&&②p^3q^3+p^3r^3+p^3s^3+q^3r^3+q^3s^3+r^3s^3

\end{eqnarray}
$
この動画を見る 

早稲田大 4次方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$は自然数
$x^4+ax^3+(a+b)x^2+(2-a)x+1=0$
この方程式の解はすべて絶対値が1の複素数である。
$a,b$を求めよ

出典:2003年早稲田大学 過去問
この動画を見る 

【高校数学】 数Ⅱ-44 剰余の定理と因数定理③

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$x^2+ax+b$が、$x+1$で割ると1余り、$x-1$で割ると3余るとき定数a,bの値を求めよう。

②整式$P(x)$を$x-1$で割ると3余り、$2x+1$で割ると4余る。$P(x)$を$(x-1)(2x+1)$で割ったときの余りを求めよう。
この動画を見る 

#29 数検1級1次 過去問 解と係数の関係

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#解と判別式・解と係数の関係#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x^3+2x^2+4x+7=0$の3つの解を$\alpha,\beta,\gamma$とする
$\alpha^4,\beta^4,\gamma^4$の値を求めよ。
この動画を見る 

藤田医科大学 式の最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#藤田医科大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a,b,c,dは実数である.
$\dfrac{(a^2+b^2)(c^2+d^2)}{(ac+bd)^2}$の最小値を求めよ.
この動画を見る 
PAGE TOP