問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}} \ (3)kを自然数として、\hspace{116pt}\\
f(x)=\sum_{n=1}^{\infty}\frac{x^{2k}}{(1+4x^{2k})^{n-1}}\hspace{20pt}\\
とおく。このとき、\lim_{x \to 0}f(x)=\boxed{\ \ カ\ \ }\ となる。\\
\\
\boxed{\ \ カ\ \ }\ の解答群\hspace{120pt}\\
⓪0\ \ \ ①1\ \ \ ②2\ \ \ ③\frac{1}{2}\ \ \ ④4\ \ \ \hspace{90pt}\\
⑤\frac{1}{4}\ \ \ ⑥2^k\ \ \ ⑦\frac{1}{2^k}\ \ \ ⑧4^k\ \ \ ⑨\frac{1}{4^k}\ \ \ \hspace{63pt}
\end{eqnarray}
2022明治大学全統理系過去問
\begin{eqnarray}
{\large\boxed{1}} \ (3)kを自然数として、\hspace{116pt}\\
f(x)=\sum_{n=1}^{\infty}\frac{x^{2k}}{(1+4x^{2k})^{n-1}}\hspace{20pt}\\
とおく。このとき、\lim_{x \to 0}f(x)=\boxed{\ \ カ\ \ }\ となる。\\
\\
\boxed{\ \ カ\ \ }\ の解答群\hspace{120pt}\\
⓪0\ \ \ ①1\ \ \ ②2\ \ \ ③\frac{1}{2}\ \ \ ④4\ \ \ \hspace{90pt}\\
⑤\frac{1}{4}\ \ \ ⑥2^k\ \ \ ⑦\frac{1}{2^k}\ \ \ ⑧4^k\ \ \ ⑨\frac{1}{4^k}\ \ \ \hspace{63pt}
\end{eqnarray}
2022明治大学全統理系過去問
単元:
#大学入試過去問(数学)#関数と極限#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}} \ (3)kを自然数として、\hspace{116pt}\\
f(x)=\sum_{n=1}^{\infty}\frac{x^{2k}}{(1+4x^{2k})^{n-1}}\hspace{20pt}\\
とおく。このとき、\lim_{x \to 0}f(x)=\boxed{\ \ カ\ \ }\ となる。\\
\\
\boxed{\ \ カ\ \ }\ の解答群\hspace{120pt}\\
⓪0\ \ \ ①1\ \ \ ②2\ \ \ ③\frac{1}{2}\ \ \ ④4\ \ \ \hspace{90pt}\\
⑤\frac{1}{4}\ \ \ ⑥2^k\ \ \ ⑦\frac{1}{2^k}\ \ \ ⑧4^k\ \ \ ⑨\frac{1}{4^k}\ \ \ \hspace{63pt}
\end{eqnarray}
2022明治大学全統理系過去問
\begin{eqnarray}
{\large\boxed{1}} \ (3)kを自然数として、\hspace{116pt}\\
f(x)=\sum_{n=1}^{\infty}\frac{x^{2k}}{(1+4x^{2k})^{n-1}}\hspace{20pt}\\
とおく。このとき、\lim_{x \to 0}f(x)=\boxed{\ \ カ\ \ }\ となる。\\
\\
\boxed{\ \ カ\ \ }\ の解答群\hspace{120pt}\\
⓪0\ \ \ ①1\ \ \ ②2\ \ \ ③\frac{1}{2}\ \ \ ④4\ \ \ \hspace{90pt}\\
⑤\frac{1}{4}\ \ \ ⑥2^k\ \ \ ⑦\frac{1}{2^k}\ \ \ ⑧4^k\ \ \ ⑨\frac{1}{4^k}\ \ \ \hspace{63pt}
\end{eqnarray}
2022明治大学全統理系過去問
投稿日:2022.09.01