福田の数学〜東京理科大学2023年創域理工学部第1問(3)〜偶奇で定義の異なる漸化式 - 質問解決D.B.(データベース)

福田の数学〜東京理科大学2023年創域理工学部第1問(3)〜偶奇で定義の異なる漸化式

問題文全文(内容文):
$\Large\boxed{1}$ (3)数列$\left\{a_n\right\}$は、$a_1$=$\displaystyle\frac{7}{5}$, $n$が偶数の時は$a_{n+1}$=$\displaystyle\frac{1+a_n}{2}$, $n$が奇数の時は$a_{n+1}$=$\displaystyle\frac{2+a_n}{2}$を満たすとする。このとき、$a_2$=$\frac{\boxed{\ \ ヘホ\ \ }}{\boxed{\ \ マミ\ \ }}$, $a_3$=$\frac{\boxed{\ \ ムメ\ \ }}{\boxed{\ \ モヤ\ \ }}$である。
さらに、自然数$k$に対して$a_{2k+1}$=$\boxed{\ \ ユ\ \ }$+$\frac{\boxed{\ \ ヨ\ \ }}{\boxed{\ \ ラ\ \ }}a_{2k-1}$となる。これを
$a_{2k+1}$-$\frac{\boxed{\ \ リ\ \ }}{\boxed{\ \ ル\ \ }}$=$\frac{\boxed{\ \ レ\ \ }}{\boxed{\ \ ロ\ \ }}\left( a_{2k-1}-\frac{\boxed{\ \ リ\ \ }}{\boxed{\ \ ル\ \ }} \right)$
と変形することにより、
$a_{2k-1}$=$\frac{1}{\boxed{\ \ ワヲ\ \ }}\left( \frac{\boxed{\ \ レ\ \ }}{\boxed{\ \ ロ\ \ }} \right)^{k-1}$+$\frac{\boxed{\ \ リ\ \ }}{\boxed{\ \ ル\ \ }}$
が得られる。また、
$a_{2k}$=$\frac{1}{\boxed{\ \ ンあ\ \ }}\left( \frac{\boxed{\ \ い\ \ }}{\boxed{\ \ う\ \ }} \right)^{k-1}$+$\frac{\boxed{\ \ え\ \ }}{\boxed{\ \ お\ \ }}$
も得られる。
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)数列$\left\{a_n\right\}$は、$a_1$=$\displaystyle\frac{7}{5}$, $n$が偶数の時は$a_{n+1}$=$\displaystyle\frac{1+a_n}{2}$, $n$が奇数の時は$a_{n+1}$=$\displaystyle\frac{2+a_n}{2}$を満たすとする。このとき、$a_2$=$\frac{\boxed{\ \ ヘホ\ \ }}{\boxed{\ \ マミ\ \ }}$, $a_3$=$\frac{\boxed{\ \ ムメ\ \ }}{\boxed{\ \ モヤ\ \ }}$である。
さらに、自然数$k$に対して$a_{2k+1}$=$\boxed{\ \ ユ\ \ }$+$\frac{\boxed{\ \ ヨ\ \ }}{\boxed{\ \ ラ\ \ }}a_{2k-1}$となる。これを
$a_{2k+1}$-$\frac{\boxed{\ \ リ\ \ }}{\boxed{\ \ ル\ \ }}$=$\frac{\boxed{\ \ レ\ \ }}{\boxed{\ \ ロ\ \ }}\left( a_{2k-1}-\frac{\boxed{\ \ リ\ \ }}{\boxed{\ \ ル\ \ }} \right)$
と変形することにより、
$a_{2k-1}$=$\frac{1}{\boxed{\ \ ワヲ\ \ }}\left( \frac{\boxed{\ \ レ\ \ }}{\boxed{\ \ ロ\ \ }} \right)^{k-1}$+$\frac{\boxed{\ \ リ\ \ }}{\boxed{\ \ ル\ \ }}$
が得られる。また、
$a_{2k}$=$\frac{1}{\boxed{\ \ ンあ\ \ }}\left( \frac{\boxed{\ \ い\ \ }}{\boxed{\ \ う\ \ }} \right)^{k-1}$+$\frac{\boxed{\ \ え\ \ }}{\boxed{\ \ お\ \ }}$
も得られる。
投稿日:2023.10.10

<関連動画>

【25分で総復習】最初から『数列①』等差数列、等比数列(数学B)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
1⃣
初項が-1、公差が2の等差数列について、以下の問いに答えよ。
(1)一般項を求めよ。
(2)第10項を求めよ。
(3)初項から第$n$項までの和を求めよ。

2⃣
等比数列3,-6,12…について、以下の問いに答えよ。
(1)一般項を求めよ。
(2)初項から第$n$項までの和を求めよ。
この動画を見る 

福田の数学〜神戸大学2024年理系第1問〜無理関数を利用して定義された数列の一般項

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#神戸大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ $c$を正の実数とする。各項が正である数列$\left\{a_n\right\}$を次のように定める。$a_1$は関数
$y$=$x$+$\sqrt{c-x^2}$ (0≦$x$≦$\sqrt c$)
が最大値をとるときの$x$の値とする。$a_{n+1}$は関数
$y$=$x$+$\sqrt{a_n-x^2}$ (0≦$x$≦$\sqrt{a_n}$)
が最大値をとるときの$x$の値とする。数列$\left\{b_n\right\}$を$b_n$=$\log_2a_n$ で定める。以下の問いに答えよ。
(1)$a_1$を$c$を用いて表せ。
(2)$b_{n+1}$を$b_n$を用いて表せ。
(3)数列$\left\{b_n\right\}$の一般項を$n$と$c$を用いて表せ。
この動画を見る 

2020年 大阪大 確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$Q$は$A$にいる。
サイコロを振って
$1$→時計回りに隣へ
$2$→反時計回りに隣へ
$3~6$→動かない

$n$回目に$A$にいる確率を$P_n$
(1)
$P_2$を求めよ

(2)
$P_{n+1}$を$P_n$で表せ

(3)
$P_n$を求めよ

出典:2020年大阪大学 過去問
この動画を見る 

東京理科 分数型漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
東京理科大学過去問題
$a_1=3,\quad a_{n+1}= \frac{3a_n+2}{a_n+2}$
数列{$a_n$}の一般項を求めよ。
この動画を見る 

漸化式 山梨大

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023年 山梨大学 過去問

$a_1=6$
$a_{n+1}=\frac{n+3}{n+1}a_n+1$
$b_n=\frac{a_n}{(n+1)(n+2)}$
この動画を見る 
PAGE TOP