大学入試問題#128 東京理科大学(2020) 定積分 - 質問解決D.B.(データベース)

大学入試問題#128 東京理科大学(2020) 定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}}\sin^5x\ dx$を計算せよ。

出典:2020年東京理科大学 入試問題
チャプター:

03:10~解答のみ掲載 見開き約5秒

単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}}\sin^5x\ dx$を計算せよ。

出典:2020年東京理科大学 入試問題
投稿日:2022.02.27

<関連動画>

共通テスト第2日程2021年数学詳しい解説〜共通テスト第2日程2021年2B第2問〜微分積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#接線と増減表・最大値・最小値#センター試験・共通テスト関連#共通テスト#不定積分・定積分#面積、体積#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第2問}$
[1] $a$を実数とし、$f(x)=(x-a)(x-2)$とおく。また、$F(x)=\int_0^xf(t)dt$とする。

(1)$a=1$のとき、$F(x)はx=\boxed{\ \ ア\ \ }$で極小になる。

(2)$a=\boxed{\ \ イ\ \ }$のとき、$F(x)$は常に増加する。また、$F(0)=\boxed{\ \ ウ\ \ }$
であるから、$a=\boxed{\ \ イ\ \ }$のとき、$F(2)$の値は$\boxed{\boxed{\ \ エ\ \ }}$である。

$\boxed{\boxed{\ \ エ\ \ }}$の解答群
⓪0 ①正 ②負

(3)$a \gt \boxed{\ \ イ\ \ }$とする。
bを実数とし、$G(x)=\int_b^xf(t)dt$とおく。

関数$y=G(x)$のグラフは、$y=F(x)$のグラフを$\boxed{\boxed{\ \ オ\ \ }}$方向に
$\boxed{\boxed{\ \ カ\ \ }}$だけ平行移動したものと一致する。また、$G(x)はx=\boxed{\ \ キ\ \ }$
で極大になり、$x=\boxed{\ \ ク\ \ }$で極小になる。
$G(b)=\boxed{\ \ ケ\ \ }$であるから、$b=\boxed{\ \ キ\ \ }$のとき、曲線$y=G(x)$と
$x$軸との共有点の個数は$\boxed{\ \ コ\ \ }$個である。


$\boxed{\boxed{\ \ オ\ \ }}$の解答群
⓪$x$軸 ①$y$軸

$\boxed{\boxed{\ \ カ\ \ }}$の解答群
⓪$b$ ①$-b$ ②$F(b)$
③$-F(b)$ ④$F(-b)$ ⑤$-F(-b)$


[2] $g(x)=|x|(x+1)$とおく。

点$P(-1,0)$を通り、傾きが$c$の直線を$l$とする。$g'(-1)=\boxed{\ \ サ\ \ }$
であるから、$0 \lt c \lt \boxed{\ \ サ\ \ }$のとき、曲線$y=g(x)$と直線$l$は3点
で交わる。そのうちの1点は$P$であり、残りの2点を点$P$に近い方から順に
$Q,R$とすると、点$Q$の$x$座標は$\boxed{\ \ シス\ \ }$であり、点$R$の$x$座標は
$\boxed{\ \ セ\ \ }$である。

また、$0 \lt c \lt \boxed{\ \ サ\ \ }$のとき、線分$PQ$と曲線$y=g(x)$で囲まれた図形の
面積を$S$とし、線分$QR$と曲線$y=g(x)$で囲まれた図形の面積を$T$とすると
$\scriptsize{S=\displaystyle \frac{\boxed{\ \ ソ\ \ }c^3+\boxed{\ \ タ\ \ }c^2-\boxed{\ \ チ\ \ }c+1}{\boxed{\ \ ツ\ \ }}}$

$T=c^{\boxed{テ}}$
である。

2021共通テスト過去問
この動画を見る 

数検準1級1次(5番 積分)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{5}$これを解け.

(1)$\displaystyle \int_{}^{} \dfrac{1}{x^2\ e^{\frac{1}{x}}}$
(2)$\displaystyle \int_{\frac{1}{2}}^{1}\dfrac{1}{x^2\ e^{\frac{1}{2}}}$
この動画を見る 

高校2年生から京大に挑戦!積分習いたての人にも解ける問題【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
2x, 5-x, 2のうち最小の数をf(x)とし、g(x)=xf(x)とおく。y=g(x)とx軸で囲まれた部分の面積は?
この動画を見る 

#福島大学2024#定積分_4#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#福島大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} x\sqrt{ 1-x }$ $dx$

出典:2024年福島大学
この動画を見る 

大学入試問題#892「数学はやっぱ根性」 #京都工芸繊維大学(2023)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$0 \leq \theta \leq \displaystyle \frac{\pi}{4}$とする
$f(\theta)=\displaystyle \int_{0}^{\frac{\pi}{4}} \displaystyle \frac{|\sin\theta-\sin x|}{\cos^2x} dx$

出典:2023年京都工芸繊維大学
この動画を見る 
PAGE TOP