問題文全文(内容文):
等式$\frac{3x^2-x+4}{(x+1)^3}=\frac{a}{(z+1)^3}+\frac{b}{(x+1)^2}+\frac{c}{x+1}$が$x$についての恒等式となるような定数$a, b, c$は$a=\fbox{ウ}, b=\fbox{エ}, c=\fbox{オ}$である。
等式$\frac{3x^2-x+4}{(x+1)^3}=\frac{a}{(z+1)^3}+\frac{b}{(x+1)^2}+\frac{c}{x+1}$が$x$についての恒等式となるような定数$a, b, c$は$a=\fbox{ウ}, b=\fbox{エ}, c=\fbox{オ}$である。
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
等式$\frac{3x^2-x+4}{(x+1)^3}=\frac{a}{(z+1)^3}+\frac{b}{(x+1)^2}+\frac{c}{x+1}$が$x$についての恒等式となるような定数$a, b, c$は$a=\fbox{ウ}, b=\fbox{エ}, c=\fbox{オ}$である。
等式$\frac{3x^2-x+4}{(x+1)^3}=\frac{a}{(z+1)^3}+\frac{b}{(x+1)^2}+\frac{c}{x+1}$が$x$についての恒等式となるような定数$a, b, c$は$a=\fbox{ウ}, b=\fbox{エ}, c=\fbox{オ}$である。
投稿日:2024.07.13





