一橋大 整数問題 - 質問解決D.B.(データベース)

一橋大 整数問題

問題文全文(内容文):
$n$は自然数

(1)
$n^2$と$2n+1$は互いに素、示せ

(2)
$n^2+2$が$2n+1$の倍数となる$n$を求めよ

出典:1992年一橋大学 過去問
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数

(1)
$n^2$と$2n+1$は互いに素、示せ

(2)
$n^2+2$が$2n+1$の倍数となる$n$を求めよ

出典:1992年一橋大学 過去問
投稿日:2019.08.19

<関連動画>

名古屋大 指数 整数 方程式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^a=y^b=z^c=xyz$を満たす1でない3つの正の実数の組$(x,y,z)$が、少なくとも1組存在するような自然数の組$(a,b,c)$
$a \leqq b \leqq c$を全て求めよ

出典:2002年名古屋大学 過去問
この動画を見る 

素数に関する問題 国学院高校

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$a^2-b^2$が素数のとき
a-b=?
(a,bはともに自然数で、a>b)

國學院高等学校
この動画を見る 

宮崎大 数学的帰納法 合同式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数学的帰納法#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n=2^n+1$
$a_n$のうち5で割り切れるものを小さい順に並べた数列を$b_k$とする.

(1)$b_k$を推定せよ.
(2)(1)の推定が全ての自然数$k$で成立することを証明せよ.

宮崎大過去問
この動画を見る 

ウィルソンの定理

アイキャッチ画像
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(p-1)!+1$は$p$の倍数であることを示せ.
この動画を見る 

2021京都大 整数問題(理系)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3^n-2^n$が素数なら$n$は素数であることを示せ.

2021京都大(理)
この動画を見る 
PAGE TOP