関西大 漸化式 高校数学 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

関西大 漸化式 高校数学 Mathematics Japanese university entrance exam

問題文全文(内容文):
関西大学過去問題
n自然数
$a_1=3 \quad\quad a_{n+1}=2a_n-n^2+n$
$a_n$をnで表せ

立教大学過去問題
$2^{18}-1$を素因数分解
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数列#漸化式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
関西大学過去問題
n自然数
$a_1=3 \quad\quad a_{n+1}=2a_n-n^2+n$
$a_n$をnで表せ

立教大学過去問題
$2^{18}-1$を素因数分解
投稿日:2018.08.13

<関連動画>

福田の一夜漬け数学〜多変数関数、1文字固定(受験編)

アイキャッチ画像
単元: #数Ⅱ#式と証明#図形と方程式#微分法と積分法#恒等式・等式・不等式の証明#軌跡と領域#平均変化率・極限・導関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a+b+c=1$のとき、$a^2+b^2+c^2$の最小値を求めよ。

$xy$平面内の領域$-1 \leqq x \leqq 1,-1 \leqq y \leqq 1$ において、$1-ax-by+axy$
の最小値が正であるような$(a,b)$の存在範囲を図示せよ。
この動画を見る 

【二項定理のキホン】二項定理の基礎を解説しました!〔数学 高校数学〕

アイキャッチ画像
単元: #数Ⅱ#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
二項定理の基礎について解説します。
この動画を見る 

【数Ⅱ】式と証明:(茶番)突然問題を出されたから解いてみた

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
点$(x,y)$が$\frac{x^2}{4}+\frac{y^2}{5}=$1 $x>0$、$y>0$ を満たしながら動くとき、

$\log_{2}x + \log_{\frac{1}{2}}\frac{1}{y} $の最大値を求めよ。
この動画を見る 

分数の式の値 國學院高校 企業案件ではありません

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#式と証明#整式の除法・分数式・二項定理#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{A}{B} = \frac{A+15}{B+42}$のとき$\frac{A}{B} =?$

国学院高等学校
この動画を見る 

福田のわかった数学〜高校2年生第6回〜相加相乗平均の関係

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 相加相乗平均の関係
$a,b,c$を正の数とする。
(1)$\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$を示せ。
(2)$ab+bc+ca=k$(定数)のとき、$abc$の最大値とその時の$a,b,c$を求めよ。
この動画を見る 
PAGE TOP