【数Ⅱ】図形と方程式:通過領域の基本<その2>順像法 - 質問解決D.B.(データベース)

【数Ⅱ】図形と方程式:通過領域の基本<その2>順像法

問題文全文(内容文):
aが全ての実数を動くとき、$y=x^2+ax^a$が通りうる(x,y)全体の領域を図示せよ。
頭の中でグラフを動かそう!
チャプター:

0:00 「xを決める」解法の考え方について
1:17 解答
6:30 必要性の証明

単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aが全ての実数を動くとき、$y=x^2+ax^a$が通りうる(x,y)全体の領域を図示せよ。
頭の中でグラフを動かそう!
投稿日:2021.08.05

<関連動画>

福田のおもしろ数学503〜複雑な三角方程式が実数解をもつ条件

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\cos^2\pi(a-x)-2\cos \pi(a-x)$

$+\cos\dfrac{3\pi x}{2a}\cos \left(\dfrac{\pi x}{2a}+\dfrac{\pi}{3}\right)+2=0$

が実数解をもつような

自然数$a$の最小値を求めよ。
    
この動画を見る 

福田の数学〜立教大学2021年経済学部第1問(1)〜相加平均と相乗平均の関係

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(1)$x \gt 0$における$(x+\frac{1}{x})(x+\frac{2}{x})$の最小値は$\boxed{ア}$である。

2021立教大学経済学部過去問
この動画を見る 

指数の計算 2通りで解説

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#指数関数と対数関数#指数関数#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2^{13}-2^{12} = 2^▢$

常総学院高等学校
この動画を見る 

福田の数学〜立教大学2021年経済学部第1問(2)〜円に内接する四角形

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)円Cに内接する四角形PQRSにおいて、対角線PRは円Cの中心Oを通る。
また、各辺の長さは、$PQ=1, QR=8, RS=4, SP=7$であり、
角Pの大きさを$\theta$とする。ただし、$0 \lt \theta \lt \pi$とする。
このとき円Cの直径は$\boxed{イ},\cos\theta=\boxed{ウ}$である。

2021立教大学経済学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年看護医療学部第5問〜定積分で表された関数の最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{5}}$関数$f(x)$を$f(x)=(x+1)(|x-1|-1)+2$で定める。
(1)$y=f(x)$のグラフをかきなさい。
(2)kを実数とする。このとき、方程式$f(x)=k$が異なる3つの実数解
をもつようなkの値の範囲は$\boxed{\ \ ア\ \ }$である。
(3)曲線$y=f(x)$上の点$P(0,f(0))$における接線lの方程式は$y=\boxed{\ \ イ\ \ }$である。
また、曲線$y=f(x)$と直線lは2つの共有点をもつが、点Pとは異なる共有点を
Qとするとき、点Qのx座標は$\boxed{\ \ ウ\ \ }$である。さらに、曲線$y=f(x)$と直線lで
囲まれた図形の面積は$\boxed{\ \ エ\ \ }$である。
(4)関数$F(x)$を$F(x)=\int_0^xf(t)dt$で定める。このとき、$F'(x)=0$を満たすxを
すべて求めると$x=\boxed{\ \ オ\ \ }$である。これより、関数$F(x)$は
$x=\boxed{\ \ カ\ \ }$で最小値$\boxed{\ \ キ\ \ }$をとることがわかる。

2022慶應義塾大学看護医療学科過去問
この動画を見る 
PAGE TOP