福田の数学〜明治大学2021年全学部統一入試IⅡAB第2問〜2つのグラフの共有点の個数と面積 - 質問解決D.B.(データベース)

福田の数学〜明治大学2021年全学部統一入試IⅡAB第2問〜2つのグラフの共有点の個数と面積

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} a,kを実数とし、xの関数f(x),\ g(x)を次のようにする。\\
f(x)=x^3-ax, g(x)=|x|+k\\
\\
(1)a=4,\ k=0のとき、曲線y=f(x)とy=g(x)は3個の異なる共有点をもつ。\\
それぞれの交点のx座標は-\sqrt{\boxed{\ \ ア\ \ }},\ 0,\ \sqrt{\boxed{\ \ イ\ \ }}である。\\
\\
(2)k=0のとき、曲線y=f(x)とy=g(x)がちょうど2個の異なる共有点をもつ\\
aの範囲は\boxed{\ \ ウ\ \ }かつ\boxed{\ \ エ\ \ }である。\\
\\
(3)a=4のとき、曲線y=f(x)とy=g(x)が3個の異なる共有点をもつkの範囲は\\
-\frac{\boxed{\ \ オカ\ \ }\sqrt{\boxed{\ \ キク\ \ }}}{\boxed{\ \ ケ\ \ }} \lt k \lt \boxed{\ \ コ\ \ }である。\\
\\
(4)a=4,\ k=\boxed{\ \ コ\ \ }のとき、曲線y=f(x)とy=g(x)の共有点のx座標は-\boxed{\ \ サ\ \ }\\
と\boxed{\ \ シ\ \ }+\sqrt{\boxed{\ \ ス\ \ }}であり、y=f(x)とy=g(x)で囲まれる図形の面積は\\
\boxed{\ \ セ\ \ }+\boxed{\ \ ソ\ \ }\sqrt{\boxed{\ \ タ\ \ }}である。\\
\\
\boxed{\ \ ウ\ \ }の解答群\\
⓪-2 \lt a  ①-2 \leqq a  ②-1 \lt a  ③-1 \leqq a  ④0 \lt a\\
⑤0 \leqq a  ⑥1 \lt a  ⑦1 \leqq a  ⑧2 \lt a  ⑨2 \leqq a  \\
\\
\\
\boxed{\ \ エ\ \ }の解答群\\
⓪a \lt -2  ①a \leqq -2  ②a \lt -1  ③a \leqq -1  ④a \lt 0\\
⑤a \leqq 0  ⑥a \lt 1  ⑦a \leqq 1  ⑧a \lt 2  ⑨a \leqq 2  \\
\end{eqnarray}

2021明治大学全統過去問
単元: #数Ⅰ#数Ⅱ#2次関数#2次関数とグラフ#微分法と積分法#数学(高校生)#大学入試解答速報#数学#明治大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} a,kを実数とし、xの関数f(x),\ g(x)を次のようにする。\\
f(x)=x^3-ax, g(x)=|x|+k\\
\\
(1)a=4,\ k=0のとき、曲線y=f(x)とy=g(x)は3個の異なる共有点をもつ。\\
それぞれの交点のx座標は-\sqrt{\boxed{\ \ ア\ \ }},\ 0,\ \sqrt{\boxed{\ \ イ\ \ }}である。\\
\\
(2)k=0のとき、曲線y=f(x)とy=g(x)がちょうど2個の異なる共有点をもつ\\
aの範囲は\boxed{\ \ ウ\ \ }かつ\boxed{\ \ エ\ \ }である。\\
\\
(3)a=4のとき、曲線y=f(x)とy=g(x)が3個の異なる共有点をもつkの範囲は\\
-\frac{\boxed{\ \ オカ\ \ }\sqrt{\boxed{\ \ キク\ \ }}}{\boxed{\ \ ケ\ \ }} \lt k \lt \boxed{\ \ コ\ \ }である。\\
\\
(4)a=4,\ k=\boxed{\ \ コ\ \ }のとき、曲線y=f(x)とy=g(x)の共有点のx座標は-\boxed{\ \ サ\ \ }\\
と\boxed{\ \ シ\ \ }+\sqrt{\boxed{\ \ ス\ \ }}であり、y=f(x)とy=g(x)で囲まれる図形の面積は\\
\boxed{\ \ セ\ \ }+\boxed{\ \ ソ\ \ }\sqrt{\boxed{\ \ タ\ \ }}である。\\
\\
\boxed{\ \ ウ\ \ }の解答群\\
⓪-2 \lt a  ①-2 \leqq a  ②-1 \lt a  ③-1 \leqq a  ④0 \lt a\\
⑤0 \leqq a  ⑥1 \lt a  ⑦1 \leqq a  ⑧2 \lt a  ⑨2 \leqq a  \\
\\
\\
\boxed{\ \ エ\ \ }の解答群\\
⓪a \lt -2  ①a \leqq -2  ②a \lt -1  ③a \leqq -1  ④a \lt 0\\
⑤a \leqq 0  ⑥a \lt 1  ⑦a \leqq 1  ⑧a \lt 2  ⑨a \leqq 2  \\
\end{eqnarray}

2021明治大学全統過去問
投稿日:2021.09.18

<関連動画>

福田の数学〜早稲田大学2021年人間科学部第7問〜双曲線と図形問題

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#平面上の曲線#図形と計量#2次曲線#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{7}} 原点をOとする座標平面上で、2点(\sqrt5,0),(-\sqrt5,0)を焦点とし、2点A(1,0),A'(-1,0)を\\
頂点とする双曲線をHとする。Hの方程式を\frac{x^2}{a^2}-\frac{y^2}{b^2}=1と表すとき、a^2=\boxed{\ \ ネ\ \ },\ b^2=\boxed{\ \ ノ\ \ }\\
である。双曲線Hの漸近線のうち、傾きが正であるものの方程式はy=\boxed{\ \ ハ\ \ }xである。\\
点P(p,q)は双曲線Hの第1象限の部分を動く点とする。点Pからx軸に下ろした垂線の足をQ、\\
直線PQと双曲線Hの漸近線との交点のうち、第1象限にあるものをRとする。点Pにおける\\
Hの接線と直線x=1との交点をMとし、直線OMと直線APとの交点をNとする。三角形OQR\\
の面積をS、三角形OANの面積をTとするとき、\frac{T}{S}は、p=\boxed{\ \ ヒ\ \ }のとき、最大値\frac{\boxed{\ \ フ\ \ }}{\boxed{\ \ ヘ\ \ }}をとる。
\end{eqnarray}

2021早稲田大学人間科学部過去問
この動画を見る 

数学「大学入試良問集」【1−2 数と式】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#数学(高校生)#関西大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$x,y$を実数とする。
下の(1)、(2)の文中の□にあてはまるものを、次の(ア)、(イ)、(ウ)、(エ)の中から選べ。
 (ア)必要条件ではあるが、十分条件ではない
 (イ)十分条件ではあるが、必要条件ではない
 (ウ)必要十分条件である
 (エ)必要条件でも、十分条件でもない

(1)$x^2+y^2 \lt 1$は、$-1 \lt x \lt $であるための□。
(2)$-1 \lt x \lt 1$かつ$-1 \lt y \lt 1$は$x^2+y^2 \lt 1$であるための□。
この動画を見る 

上智大2020整数解をもつ二次方程式の条件 2つの解法

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-mx+3m+1=0$が整数解をもつ整数$m$を求めよ.

2020上智大過去問
この動画を見る 

福田の数学〜東北大学2023年文系第1問〜三角形の面積と内接円と外接円の半径

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角形の辺の比(内分・外分・二等分線)#周角と円に内接する四角形・円と接線・接弦定理#三角関数#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 平面上の半径1の円Cの中心Oから距離4だけ離れた点Lをとる。点Lを通る円Cの2本の接線と円Cの接点をそれぞれM、Nとする。以下の問いに答えよ。
(1)三角形LMNの面積を求めよ。
(2)三角形LMNの内接円の半径をrと、三角形LMNの外接円の半径Rをそれぞれ求めよ。

2023東北大学文系過去問
この動画を見る 

悠仁さまも受験!箱ヒゲ図 筑波大学附属(改題)2022 入試問題解説100問解説!!56問目

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
1問5点で20問の100点満点のテスト。
8人が受けたときの平均点は?
*図は動画内参照

2022筑波大学附属高等学校
この動画を見る 
PAGE TOP