大学入試問題#240 防衛医科大学(2020) #曲線の長さ - 質問解決D.B.(データベース)

大学入試問題#240 防衛医科大学(2020) #曲線の長さ

問題文全文(内容文):
$0 \leqq t \leqq \pi$
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=3\cos\ t-\cos\ 3t \\
y=3\sin\ t-\sin\ 3t
\end{array}
\right.
\end{eqnarray}$
で表される曲線の長さを求めよ。

出典:2020年防衛医科大学 入試問題
チャプター:

00:00 問題提示
00:12 本編スタート
03:35 作成した解答①のみの掲載
03:57 作成した解答②のみの掲載

単元: #大学入試過去問(数学)#微分とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#防衛医科大学
指導講師: ますただ
問題文全文(内容文):
$0 \leqq t \leqq \pi$
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=3\cos\ t-\cos\ 3t \\
y=3\sin\ t-\sin\ 3t
\end{array}
\right.
\end{eqnarray}$
で表される曲線の長さを求めよ。

出典:2020年防衛医科大学 入試問題
投稿日:2022.06.29

<関連動画>

福田の数学〜上智大学2022年TEAP理系型第1問(1)〜1次の近似式

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#学校別大学入試過去問解説(数学)#速度と近似式#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
1 (1) $\cos 61°$の近似値を求めたい。$y=\cos x$ の1次の近似式を用いて計算し、
小数第3位を四捨五入すると $\cos 61° ≒ 0. [ア] $を得る。
ただし、$\pi= 3.14 √3=1.73 $として用いてよい。

2022上智大学理系過去問
この動画を見る 

【数Ⅲ】微分法: 微分係数の利用! f'(a)が存在するとき、次の極限をf(a),f'(a)で表せ。(1)lim(h→0){f(a+4h)-f(a+2h)}/h

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$f'(a)$が存在するとき、次の極限を$f(a),f'(a)$で表せ。
(1)$\displaystyle \lim_{h\to 0}\dfrac{f(a+4h)-f(a+2h)}{h}$

この動画を見る 

福田のわかった数学〜高校3年生理系073〜平均値の定理(1)不等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 平均値の定理(1)
$0 \lt a \lt b$のとき
$1-\frac{a}{b} \lt \log b-\log a \lt \frac{b}{a}-1$
を証明せよ。
この動画を見る 

大学入試問題「明日の2次試験にでる問題」 ハルハルさんの名作(過去1番) 体感偏差値は72

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$T=\displaystyle \frac{(x+y+z)^3}{x^3+y^3+z^3}$
$\displaystyle \frac{1}{x}+\displaystyle \frac{1}{y}+\displaystyle \frac{1}{z}=0$のとき
$T$のとりうる値の範囲を求めよ
この動画を見る 

福田の数学〜早稲田大学2021年教育学部第1問(3)〜2曲線の相接

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (3)座標平面上の2つの曲線$y=ae^x$と$y=-x^2+2x$が共有点をもち、かつ、その
共有点において共通の接線をもつような正の定数$a$の値を求めよ。

2021早稲田大学教育学部過去問
この動画を見る 
PAGE TOP