大学入試問題#240 防衛医科大学(2020) #曲線の長さ - 質問解決D.B.(データベース)

大学入試問題#240 防衛医科大学(2020) #曲線の長さ

問題文全文(内容文):
$0 \leqq t \leqq \pi$
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=3\cos\ t-\cos\ 3t \\
y=3\sin\ t-\sin\ 3t
\end{array}
\right.
\end{eqnarray}$
で表される曲線の長さを求めよ。

出典:2020年防衛医科大学 入試問題
チャプター:

00:00 問題提示
00:12 本編スタート
03:35 作成した解答①のみの掲載
03:57 作成した解答②のみの掲載

単元: #大学入試過去問(数学)#微分とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#防衛医科大学
指導講師: ますただ
問題文全文(内容文):
$0 \leqq t \leqq \pi$
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=3\cos\ t-\cos\ 3t \\
y=3\sin\ t-\sin\ 3t
\end{array}
\right.
\end{eqnarray}$
で表される曲線の長さを求めよ。

出典:2020年防衛医科大学 入試問題
投稿日:2022.06.29

<関連動画>

福田の数学〜この関数にピンときたら大正解〜北里大学2023年医学部第2問〜関数の増減と方程式の実数解の個数

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
関数$f(x)=2^x-x^2$について考える。必要ならば、$0.6 \lt \log 2 \lt 0.7,-0.4 \lt \log(\log2) \lt -0.3$を用いてよい。
(1)$f(x)$は区間 $x \geqq 4$で増加することを示せ。
(2)方程式$f'(x)=0$の異なる実数解の個数を求めよ。
(3)方程式$f(x)=0$の異なる実数解の個数を求めよ。
(4)方程式$f(x)=0$の実数解のうち、最小のものを$p$とする。
この時、曲線$y=f(x)$の$x \leq 0$の部分、放物線$y=-x^2+\dfrac{2}{\log2}x$、および2つの直線$x=p,x=0$で囲まれた図形の面積を求めよ。

2023北里大学医過去問
この動画を見る 

福田の数学〜東京大学2023年理系第5問〜整式の割り算と2重因子をもつ条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#剰余の定理・因数定理・組み立て除法と高次方程式#微分とその応用#微分法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 整式f(x)=$(x-1)^2(x-2)$を考える。
(1)g(x)を実数を係数とする整式とし、g(x)をf(x)で割った余りをr(x)とおく。
$g(x)^7$をf(x)で割った余りと$r(x)^7$をf(x)で割った余りが等しいことを示せ。
(2)a,bを実数とし、h(x)=$x^2$+ax+b とおく。$h(x)^7$をf(x)で割った余りを$h_1(x)$とおき、$h_1(x)^7$をf(x)で割った余りを$h_2(x)$とおく。$h_2(x)$がh(x)に等しくなるようなa,bの組を全て求めよ。

2023東京大学理系過去問
この動画を見る 

14大阪府教員採用試験(数学:高3-2番 微分)

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
3⃣(2)$e^x-ax^2=0$の実数解の個数を調べよ
この動画を見る 

埼玉大 微分積分 三次関数極値の差 ヨビノリ技

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+ax^2+bx$は原点で$y=-x$に接し、
$($極大値$)-($極小値$)=4,$
$($極大値$)+($極小値$) \gt 0$である。
$a,b$の値を求めよ

出典:2018年埼玉大学 過去問
この動画を見る 

福田の数学〜絞り込めればなんとかなる!〜明治大学2023年全学部統一ⅠⅡAB第1問(4)〜不等式を満たす自然数解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
自然数$m,n$があり、$1\lt m\lt n$とする。

$\displaystyle (m+\frac{1}{n})(n+\frac{1}{m})\leqq 12$

を満たす$(m,n)$を求めよ。

2023明治大学過去問
この動画を見る 
PAGE TOP