福田の数学〜名古屋大学2025文系第1問〜放物線が囲む部分の面積 - 質問解決D.B.(データベース)

福田の数学〜名古屋大学2025文系第1問〜放物線が囲む部分の面積

問題文全文(内容文):

$\boxed{1}$

実数$b,c$に対し、

放物線$y=f(x)=x^2+bx+c$が

$2$点$(p,0),(q,0)$を通ると仮定する(ただし$p\gt q$)。

また、条件$0\lt t \leqq 1$を満たす実数$t$に対し

実数$r,s$を次のように定める。

$r=\dfrac{1+t}{2}p+\dfrac{1-t}{2}q,s=\dfrac{1-t}{2}p+\dfrac{1+t}{2}q$

以下の問いに答えよ。

(1)$q-s,r-p,s+r,s-r$のそれぞれを

$b,c,t$で用いて表せ。

(2)$sr$および$s^2+r^2$を$b,c,t$を用いて表せ。

(3)放物線$y=f(x)$、直線$x=r,x=s$および

$x$軸が囲む領域の面積を$b,c,t$を用いて表せ。

$2025$年名古屋大学文系過去問題
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

実数$b,c$に対し、

放物線$y=f(x)=x^2+bx+c$が

$2$点$(p,0),(q,0)$を通ると仮定する(ただし$p\gt q$)。

また、条件$0\lt t \leqq 1$を満たす実数$t$に対し

実数$r,s$を次のように定める。

$r=\dfrac{1+t}{2}p+\dfrac{1-t}{2}q,s=\dfrac{1-t}{2}p+\dfrac{1+t}{2}q$

以下の問いに答えよ。

(1)$q-s,r-p,s+r,s-r$のそれぞれを

$b,c,t$で用いて表せ。

(2)$sr$および$s^2+r^2$を$b,c,t$を用いて表せ。

(3)放物線$y=f(x)$、直線$x=r,x=s$および

$x$軸が囲む領域の面積を$b,c,t$を用いて表せ。

$2025$年名古屋大学文系過去問題
投稿日:2025.05.18

<関連動画>

12和歌山県教員採用試験(数学:1-(5) 相加・相乗平均)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(5)$
$a\gt 0$とする.
$a^{3x}+a^{-3x}=2$のとき,
$a^x+a^{-x}$の値を求めよ.
この動画を見る 

岐阜大 積分 3次方程式の実数解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#不定積分・定積分#岐阜大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=2x^3+ax^2-\displaystyle \int_{-2}^{1} x f(t) dt$
$f(x)=0$が異なる3つの実数解をもつ$a$の範囲を求めよ

出典:2013年岐阜大学 過去問
この動画を見る 

福田の数学〜東京慈恵会医科大学2022年医学部第4問〜複素数平面と図形

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#平面上の曲線#複素数平面#方べきの定理と2つの円の関係#図形と方程式#点と直線#2次曲線#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
複素数平面上の点zが原点を中心とする半径1の円周上を動くとき、$w=z+\frac{2}{z}$
で表される点wの描く図形をCとする。Cで囲まれた部分の内部(ただし、
境界線は含まない)に定点$\alpha$をとり、$\alpha$を通る直線lがCと交わる2点を$\beta_1,\beta_2$とする。
(1)$w=u+vi$(u,vは実数)とするとき、uとvの間に成り立つ関係式を求めよ。
(2)点$\alpha$を固定したままlを動かすとき、積$|\beta_1-\alpha|・|\beta_2-\alpha|$が最大となる
ようなlはどのような直線のときか調べよ。

2022東京慈恵会医科大学医学部過去問
この動画を見る 

【数Ⅱ】【微分法と積分法】定積分で表された関数1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数 $f(x) = \int_{-1}^{x} (3t^2 - 4t + 1) \,dt$
が極値をとるときの $x$ の値を求めよ。
この動画を見る 

#産業医科大学2024#定積分_46

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#産業医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1} \sqrt{3-x^2+2x}\ dx$
を解け.

2024産業医科大学過去問題
この動画を見る 
PAGE TOP