福田の数学〜名古屋大学2025文系第1問〜放物線が囲む部分の面積 - 質問解決D.B.(データベース)

福田の数学〜名古屋大学2025文系第1問〜放物線が囲む部分の面積

問題文全文(内容文):

$\boxed{1}$

実数$b,c$に対し、

放物線$y=f(x)=x^2+bx+c$が

$2$点$(p,0),(q,0)$を通ると仮定する(ただし$p\gt q$)。

また、条件$0\lt t \leqq 1$を満たす実数$t$に対し

実数$r,s$を次のように定める。

$r=\dfrac{1+t}{2}p+\dfrac{1-t}{2}q,s=\dfrac{1-t}{2}p+\dfrac{1+t}{2}q$

以下の問いに答えよ。

(1)$q-s,r-p,s+r,s-r$のそれぞれを

$b,c,t$で用いて表せ。

(2)$sr$および$s^2+r^2$を$b,c,t$を用いて表せ。

(3)放物線$y=f(x)$、直線$x=r,x=s$および

$x$軸が囲む領域の面積を$b,c,t$を用いて表せ。

$2025$年名古屋大学文系過去問題
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

実数$b,c$に対し、

放物線$y=f(x)=x^2+bx+c$が

$2$点$(p,0),(q,0)$を通ると仮定する(ただし$p\gt q$)。

また、条件$0\lt t \leqq 1$を満たす実数$t$に対し

実数$r,s$を次のように定める。

$r=\dfrac{1+t}{2}p+\dfrac{1-t}{2}q,s=\dfrac{1-t}{2}p+\dfrac{1+t}{2}q$

以下の問いに答えよ。

(1)$q-s,r-p,s+r,s-r$のそれぞれを

$b,c,t$で用いて表せ。

(2)$sr$および$s^2+r^2$を$b,c,t$を用いて表せ。

(3)放物線$y=f(x)$、直線$x=r,x=s$および

$x$軸が囲む領域の面積を$b,c,t$を用いて表せ。

$2025$年名古屋大学文系過去問題
投稿日:2025.05.18

<関連動画>

#関西学院大学2019#不定積分_67

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#関西学院大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \dfrac{(\log x)^2}{x^2} dx$を解け.

2019関西学院大学過去問
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜円の方程式(12)共通接線、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 2つの円$x^2+y^2=4$ $\cdots$①と$(x-4)^2+y^2=1$ $\cdots$②
の共通接線を全て求めよ。
この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第3問〜反復試行の確率と3次関数の極大値

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#指数関数と対数関数#微分法と積分法#指数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$硬貨を2枚投げる試行を3回繰り返して、1回目、2回目、3回目に出た表の枚数
を順に$\alpha,\beta,\gamma$とする。3次関数
$f(x)=(x-\alpha)(x-\beta)(x-\gamma)$
を考える。
(1)関数$y=f(x)$が極値をとらない確率は$\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナ\ \ }}$である。
(2)関数$y=f(x)$が極大値をとるとき、その極大値の取り得る値のうち最小のもの
は$\boxed{\ \ ニ\ \ }$で、最大のものは$\frac{\boxed{\ \ ヌ\ \ }}{\boxed{\ \ ネ\ \ }}$である。
(3)関数$y=f(x)$が極大値$\boxed{\ \ ニ\ \ }$をとる確率は$\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハ\ \ }}$である。
(4)関数$y=f(x)$が極大値$\frac{\boxed{\ \ ヌ\ \ }}{\boxed{\ \ ネ\ \ }}$を取る確率は$\frac{\boxed{\ \ ヒ\ \ }}{\boxed{\ \ フ\ \ }}$である。

2021上智大学文系過去問
この動画を見る 

福田の数学〜筑波大学2024理系第2問〜対数不等式が表す領域と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#指数関数と対数関数#微分法と積分法#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学
指導講師: 福田次郎
問題文全文(内容文):
(1)$x\gt 1, y\gt 1$のとき、$\log_{ x } y+\log_{ y } x\geqq 2$を示せ。
(2)座標平面において、連立不等式$x\gt 1, y\gt 1, \log_{ x } y+\log_{ y } x\lt \frac{5}{2}$の表す領域を図示せよ。
(3)(2)の領域の中で$x^2+y^2\lt 12$を満たす部分に境界線を含めた図形を$\mathit{D}$とする。$\mathit{D}$の面積を求めよ。
この動画を見る 

【高校数学】  数Ⅱ-8  分数式の計算①

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎約分して既約分数にしよう。

①$\displaystyle \frac{8ax^2y^2}{48a^2xy^2}$

②$\displaystyle \frac{x^2-3x+2}{x^2-4x+3}$

③$\displaystyle \frac{4x^3+8xy^2}{12x^2}$

④$\displaystyle \frac{x^2-1}{x^3-1}$

◎計算しよう。

⑤$\displaystyle \frac{x}{x-1} \times \displaystyle \frac{x^2-1}{3x}$

⑥$\displaystyle \frac{x^2-x-6}{x^2+x} \times \displaystyle \frac{x^2-1}{x^2-5x+6}$
この動画を見る 
PAGE TOP