茨城大 不等式の証明 (補)3数の相加相乗平均証明 - 質問解決D.B.(データベース)

茨城大 不等式の証明 (補)3数の相加相乗平均証明

問題文全文(内容文):
$x^2+y^2+z^2 \geqq ax(y-z)$がすべての実数$x,y,z$について成り立つ実数$a$の範囲を求めよ

出典:2000年茨城大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#茨城大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2+y^2+z^2 \geqq ax(y-z)$がすべての実数$x,y,z$について成り立つ実数$a$の範囲を求めよ

出典:2000年茨城大学 過去問
投稿日:2019.10.28

<関連動画>

100年前の東大入試「1000の10乗根を小数第6位まで求めよ!」物理オリンピック金メダリスト林俊介解説

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \sqrt[10]{1000}$を二項定理を用いて小数第六位まで求めよ.
この動画を見る 

大学入試問題#920「工夫しがいがある問題」

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$f(x)=\displaystyle \frac{x^4+x^2+1}{x^3-1}(x \gt 1)$

出典:1963年 一橋大学
この動画を見る 

福田の数学〜早稲田大学2022年教育学部第1問(4)〜無限級数の和と部分分数分解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (4)次の無限級数の和は自然数となる。その自然数を求めよ。\\
\sum_{n=6}^{\infty}\frac{1800}{(n-5)(n-4)(n-1)n}\hspace{50pt}
\end{eqnarray}

2022早稲田大学教育学部過去問
この動画を見る 

整式の剰余(訂正版)

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数である.
$x^{6n}$を$x^4+x^2+1$で割った余りを求めよ.
この動画を見る 

分数の中に分数

アイキャッチ画像
単元: #数Ⅱ#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{\frac{3}{4}}{\frac{5}{6}}$
この動画を見る 
PAGE TOP