【高校数学】 数B-60 調和数列 - 質問解決D.B.(データベース)

【高校数学】 数B-60 調和数列

問題文全文(内容文):
①$1,\dfrac{1}{3},\dfrac{1}{5},x,y,・・・$が調和数列であるとき,
$x,y$の値と一般項を求めよう.

②第3項が$\dfrac{1}{2}$,第9項が$\dfrac{1}{5}$であるような
調和数列$\{a_n \}$の一般項を求めよう.
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$1,\dfrac{1}{3},\dfrac{1}{5},x,y,・・・$が調和数列であるとき,
$x,y$の値と一般項を求めよう.

②第3項が$\dfrac{1}{2}$,第9項が$\dfrac{1}{5}$であるような
調和数列$\{a_n \}$の一般項を求めよう.
投稿日:2016.01.23

<関連動画>

【数B】【数列】自然数の式の証明1 ※問題文は概要欄

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1) 整数$n$を$2$で割った余りで分類することで、$3n^2-n$が$2$の倍数であることを証明せよ。
(2) 整数$n$を$3$で割った余りで分類することで、 $n^3-n+9$が$3$の倍数であることを証明せよ。
この動画を見る 

福田のわかった数学〜高校3年生理系076〜平均値の定理(4)数列の極限の問題

アイキャッチ画像
単元: #数列#漸化式#関数と極限#微分とその応用#数列の極限#接線と法線・平均値の定理#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$平均値の定理(4)
微分可能な関数$f(x)$が$f(1)=1, 0 \lt f'(x) \leqq \frac{1}{2}$を満たしている。
$a_{n+1}=f(a_n)$で定義される数列$\left\{a_n\right\}$について、
$\lim_{n \to \infty}a_n=1$であることを示せ。
この動画を見る 

福田の数学〜京都大学2025理系第6問〜確率確率漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{6}$

$n$は$2$以上の整数とする。

$1$枚の硬貨を続けて$n$回投げる。

このとき、$k$回目$(1\leqq l \leqq n)$に表が出たら

$X_k=1$、裏が出たら$X_k=0$として、

$X_1,X_2,\cdots ,X_n$を定める。

$Y_n=\displaystyle \sum_{k-2}^{n} X_{k-1}X_k$とするとき、

$Y_n$が奇数である確率$p_n$を求めよ。

$2025$年京都大学理系過去問題
この動画を見る 

福田の数学〜慶應義塾大学理工学部2025第3問〜確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

点$P, Q$を数直線の原点におき、
$1$個のさいころを投げて
出た目に応じて$P, Q$を動かす。
偶数の目が出たときは$P$を正の向きに$1$だけ動かし、
$5$または$6$の目が出たときは
$Q$を正の向きに$1$だけ動かす。
たとえば、$6$の目が出たときは$P, Q$をともに
正の向きに$1$だけ動かす。
$P$と$Q$の距離が初めて$2$となるまで
さいころを投げ続けることとし、
$P$と$Q$の距離が$2$となったら、
それ以降はさいころを投げない。
$n$回さいころを投げて$P$と$Q$の距離が
$2$となる確率を$p_n$とする。

(1)$P_2 = \boxed{シ}$である。

(2)$n$回さいころを投げて、
$P$が$Q$よりも正の向きに
$1$だけ進んでいる確率を$x_n$、
$P$と$Q$が同じ位置にある確率を$y_n$、
$Q$が$P$よりも正の向きに$1$だけ進んでいる確率を
$z_n$とすると、

$y_{n+1}=\boxed{ス}x_n+\boxed{セ}y_n+\boxed{ソ}z_n$

という関係式が成立する。

また、$x_n=\boxed{タ}z_n$が成り立つ。

ただし、$\boxed{ス}$~$\boxed{タ}$には数を記入すること。

(3)関係式

$z_{n+1}+\alpha y_{n+1}=\beta(z_n+\alpha y_n)$

を満たす定数の組$(\alpha,\beta)$は$\boxed{チ}$と$\boxed{ツ}$の$2$組ある。

(4)$p_n$を$n$を用いて表すと$p_n=\boxed{テ}$となる。

$2025$年慶應義塾大学理工学部過去問題
この動画を見る 

福田のおもしろ数学339〜自然数の列から平方数を除いてできる列の第2024項の値

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
自然数の列$1,2,3,\cdots$から平方数を除いてできる列を$a_1,a_2,a_3,\cdots$とする。$a_{2024}$を求めて下さい。
この動画を見る 
PAGE TOP