福田の数学〜慶應義塾大学2021年経済学部第1問〜2つの円に同時に外接する円の条件 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2021年経済学部第1問〜2つの円に同時に外接する円の条件

問題文全文(内容文):
${\Large\boxed{1}}$ 座標平面上の原点を中心とする$半径2$の円を$C_1$、中心の座標が$(7,0)$、$半径3$の円を$C_2$とする。さらに$r$を正の実数とするとき、$C_1$と$C_2$に同時に外接する円で、その中心の座標が$(a,b)$、半径が$r$であるものを$C_3$とする。ただし、2つの円が外接するとは、それらが$1点$を共有し、中心が互いの外部にあるときをいう。
$(1)r$の最小値は$\boxed{\ \ ア\ \ }$であり、$a$の最大値は$\boxed{\ \ イ\ \ }$となる。
$(2)a$と$b$は関係式$b^2=\boxed{\ \ ウエ\ \ }(a+\boxed{\ \ オカ\ \ })(a-4)$を満たす。
$(3)C_3$が$直線x=-3$に接するとき、$a=\frac{\boxed{\ \ キク\ \ }}{\boxed{\ \ ケ\ \ }},$ $|b|=\frac{\sqrt{\boxed{\ \ コサシ\ \ }}}{\boxed{\ \ ス\ \ }}$である。
$(4)点(a,b)$と原点を通る直線と、$点(a,b)$と$点(7,0)$を通る直線が直交するとき、
$|b|=\frac{\boxed{\ \ セソ\ \ }}{\boxed{\ \ タ\ \ }}$となる。

2021慶應義塾大学経済学部過去問
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 座標平面上の原点を中心とする$半径2$の円を$C_1$、中心の座標が$(7,0)$、$半径3$の円を$C_2$とする。さらに$r$を正の実数とするとき、$C_1$と$C_2$に同時に外接する円で、その中心の座標が$(a,b)$、半径が$r$であるものを$C_3$とする。ただし、2つの円が外接するとは、それらが$1点$を共有し、中心が互いの外部にあるときをいう。
$(1)r$の最小値は$\boxed{\ \ ア\ \ }$であり、$a$の最大値は$\boxed{\ \ イ\ \ }$となる。
$(2)a$と$b$は関係式$b^2=\boxed{\ \ ウエ\ \ }(a+\boxed{\ \ オカ\ \ })(a-4)$を満たす。
$(3)C_3$が$直線x=-3$に接するとき、$a=\frac{\boxed{\ \ キク\ \ }}{\boxed{\ \ ケ\ \ }},$ $|b|=\frac{\sqrt{\boxed{\ \ コサシ\ \ }}}{\boxed{\ \ ス\ \ }}$である。
$(4)点(a,b)$と原点を通る直線と、$点(a,b)$と$点(7,0)$を通る直線が直交するとき、
$|b|=\frac{\boxed{\ \ セソ\ \ }}{\boxed{\ \ タ\ \ }}$となる。

2021慶應義塾大学経済学部過去問
投稿日:2021.07.05

<関連動画>

円と二等辺三角形 土佐高校

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
BC=?
*図は動画内参照

土佐高等学校(改)
この動画を見る 

ルートを含む二次方程式の計算 2024早稲田本庄最初の一問

アイキャッチ画像
単元: #数Ⅰ#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次方程式と2次不等式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(\sqrt 5 + \sqrt 3 )x^2+2 \sqrt 3x - \sqrt 5+ \sqrt 3= 0$を解け
2024早稲田大学 本庄高等学院
この動画を見る 

数と式の全パターン①【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
1.次の式の分母を有理化せよ。
$\displaystyle \frac{1}{1+\sqrt{ 2 }+\sqrt{ 3 }}$

2.次の問いに答えよ。
$x=\displaystyle \frac{\sqrt{ 5 }+\sqrt{ 3 }}{\sqrt{ 5 }-\sqrt{ 3 }},\ y=\displaystyle \frac{\sqrt{ 5 }-\sqrt{ 3 }}{\sqrt{ 5 }+\sqrt{ 3 }}$のとき、次の式の値を求めよ。
(1)$x+y$
(2)$xy$
(3)$x^2+y^2$
(4)$x^3+y^3$
(5)$x^4+y^4$
(6)$x^5+y^5$

3.次の問いに答えよ。
$x+\displaystyle \frac{1}{x}=3$のとき、次の式の値を求めよ。
(1)$x^2+\displaystyle \frac{1}{x^2}$
(2)$x-\displaystyle \frac{1}{x}$
(3)$x-^3+\displaystyle \frac{1}{x^3}$
(4)$x^4+\displaystyle \frac{1}{x^4}$
この動画を見る 

【高校数学】絶対値の1次不等式まとめ 1-14.5【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$\displaystyle
(1)\,|x-4|\leqq 3x
$
$\displaystyle
(2)\,|x|+|x-2| < x+1
$
$\displaystyle
(3)\,|2x+1|\leqq |2x-1|+x
$
この動画を見る 

【高校数学】  数Ⅰ-62  2次不等式①

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$x^2+5x+6 \lt 0$
②$x^2-4x+3 \gt 0$
③$x^2-7x+10 \geqq 0$
④$6x^2-5x+1 \leqq 0$
⑤$x^2-16 \lt 0$
⑥$-2x^2 + 7x+4 \geqq 0$
この動画を見る 
PAGE TOP