整数問題 大阪教育大附属天王寺 - 質問解決D.B.(データベース)

整数問題 大阪教育大附属天王寺

問題文全文(内容文):
自然数A,B,Cを求めよ。
$
\begin{eqnarray}
\left\{
\begin{array}{l}
A \div B \times C=12 \\
A \div B - C=1 \\
A \div B =10
\end{array}
\right.
\end{eqnarray}
$
大阪教育大学附属高等学校天王寺校舎
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
自然数A,B,Cを求めよ。
$
\begin{eqnarray}
\left\{
\begin{array}{l}
A \div B \times C=12 \\
A \div B - C=1 \\
A \div B =10
\end{array}
\right.
\end{eqnarray}
$
大阪教育大学附属高等学校天王寺校舎
投稿日:2021.06.24

<関連動画>

2021関西医科大 絶対値記号・整数問題

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-\vert x \vert y+y^2=3$
整数$(x,y)$を求めよ.

2021関西医科大過去問
この動画を見る 

999C n が5の倍数になる最小のn

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
${}_{999} \mathrm{ C }_n$が$5$の倍数となる最小の$n$を求めよ.
この動画を見る 

約数4個の数 渋谷教育学園幕張

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
自然数nはちょうど4つの約数を持ちそのうち2つは素数である。
これら4つの約数の和が24であるような自然数nをすべて求めよ。

渋谷教育学園幕張高等学校
この動画を見る 

宮崎大 整数問題基本

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
素数Pを2進法で表したらすべての位の数が1でk桁であったkは素数であることを示せ.

宮崎大過去問
この動画を見る 

【理数個別の過去問解説】2021年度東京大学 数学 理科・文科第4問(4)解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
東京大学 2021年理科・文科第4問(4)
以下の問いに答えよ。
(1)正の奇数K,Lと正の整数A,BがKA=LBを満たしているとする。Kを4で割った余りがLを4で割った余りと等しいならば、Aを4で割った余りはBを4で割った余りと等しいことを示せ。
(2)正の整数a,bがa>bを満たしているとする。このとき、$A=_{4a+1}C_{4b+1},B={}_a\mathrm{C}_b$に対してKA=LBとなるような正の奇数K,Lが存在することを示せ。
(3)a,bは(2)の通りとし、さらにa-bが2で割り切れるとする。${}_{4a+1}\mathrm{C}_{4b+1}wp4$で割った余りは${}_a\mathrm{C}_b$を4で割った余りと等しいことを示せ。
(4)2021C37を4で割った余りを求めよ。
この動画を見る 
PAGE TOP