【高校数学】 数B-97 数学的帰納法③ - 質問解決D.B.(データベース)

【高校数学】 数B-97 数学的帰納法③

問題文全文(内容文):
①$n$を自然数とするとき,
$3^{n+2} \gt 10n+12$を数学的帰納法によって証明しよう.
単元: #数列#数学的帰納法#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$n$を自然数とするとき,
$3^{n+2} \gt 10n+12$を数学的帰納法によって証明しよう.
投稿日:2016.03.04

<関連動画>

福田の数学〜慶應義塾大学2022年総合政策学部第1問〜ガウス記号を含む数列の和

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$実数xに対して、x以下の最大の整数を$[x]$と表すことにする。
いま、数列$\left\{a_n\right\}$を
$a_n=[\sqrt{2n}+\frac{1}{2}]$
と定義すると
$a_1=\boxed{\ \ ア\ \ },\ \ \ \ a_2=\boxed{\ \ イ\ \ },\ \ \ \ a_3=\boxed{\ \ ウ\ \ },\ \ \ \ a_4=\boxed{\ \ エ\ \ },\ \ \ \ a_5=\boxed{\ \ オ\ \ },a_6=\boxed{\ \ カ\ \ },$
となる。このとき、$a_n=10$となるのは、$\boxed{\ \ キク\ \ } \leqq n \leqq \boxed{\ \ ケコ\ \ }$の場合に限られる。
また、$\sum_{n=1}^{\boxed{\ \ ケコ\ \ }}a_n=\boxed{\ \ サシスセ\ \ }$である。

2022慶應義塾大学総合政策学部過去問
この動画を見る 

新潟大 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#新潟大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{a+2}=\displaystyle \frac{(a_{n+1})^3}{(a_{n})^2}$

$a_{1}=2$
$a_{2}=4$

一般項$a_{n}$を求めよ

出典:1996年新潟大学 過去問
この動画を見る 

漸化式・特性方程式・三項間漸化式・視聴者からの質問への返答

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
漸化式・特性方程式・三項間漸化式・視聴者からの質問への返答です.
$a_{n+2}-3a_{n+1}-4a_n=0$ $a_1=1$ $a_2=2$
この動画を見る 

鳥取大 3項間漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
国立大学法人鳥取大学

$a_1=1,$$a_2=2$
$a_n$$_+$$_2$$a_{n+2}a_{n}=2(a_{n+1})^2$

$(1)$一般項$a_n$
$(2)$初項から第$n$項までの積

この動画を見る 

漸化式と整数の融合問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=2$,$a_{n+1}=2^{n^2+2n-1}・a^2_n$
$a_n$の1の位が2になるのは$a_1$のみであることを示せ.

この動画を見る 
PAGE TOP